March  2021, 29(1): 1859-1880. doi: 10.3934/era.2020095

Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method

1. 

School of Mathematics and Computational Science, Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Xiangtan 411105, Hunan, China

2. 

College of Information and Intelligence Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China

3. 

School of Mathematical Science, South China Normal University, Guangzhou 510631, Guangdong, China

* Corresponding author: Yanping Chen

Received  April 2020 Revised  July 2020 Published  September 2020

Fund Project: This work is supported by the State Key Program of National Natural Science Foundation of China (11931003) and National Natural Science Foundation of China (41974133, 11671157, 11971410)

The mathematical model of a semiconductor device is described by a coupled system of three quasilinear partial differential equations. The mixed finite element method is presented for the approximation of the electrostatic potential equation, and the characteristics finite element method is used for the concentration equations. First, we estimate the mixed finite element and the characteristics finite element method solution in the sense of the $ L^q $ norm. To linearize the full discrete scheme of the problem, we present an efficient two-grid method based on the idea of Newton iteration. The two-grid algorithm is to solve the nonlinear coupled equations on the coarse grid and then solve the linear equations on the fine grid. Moreover, we obtain the $ L^{q} $ error estimates for this algorithm. It is shown that a mesh size satisfies $ H = O(h^{1/2}) $ and the two-grid method still achieves asymptotically optimal approximations. Finally, the numerical experiment is given to illustrate the theoretical results.

Citation: Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095
References:
[1]

R. E. BankW. M. CoughranW. FichtnerE. H. GrosseD. J. Rose and R. K. Smith, Transient simulation of silicon devices and circuits, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, 4 (1985), 436-451.  doi: 10.1109/TCAD.1985.1270142.  Google Scholar

[2]

S. C. Brenner and L. Ridgway Scott, The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, 15, Springer, New York, 2008. doi: 10.1007/978-0-387-75934-0.  Google Scholar

[3]

F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge, 8 (1974), 129–151. doi: 10.1051/m2an/197408R201291.  Google Scholar

[4]

C. ChenM. Yang and C. Bi, Two-grid methods for finite volume element approximations of nonlinear parabolic equations, J. Comput. Appl. Math., 228 (2009), 123-132.  doi: 10.1016/j.cam.2008.09.001.  Google Scholar

[5]

Y. Chen and H. Hu, Two-grid method for miscible displacement problem by mixed finite element methods and mixed finite element method of characteristics, Commun. Comput. Phys., 19 (2016), 1503-1528.  doi: 10.4208/cicp.scpde14.46s.  Google Scholar

[6]

Y. ChenY. Huang and D. Yu, A two-grid method for expanded mixed finite-element solution of semilinear reaction-diffusion equations, Internat. J. Numer. Methods Engrg., 57 (2003), 193-209.  doi: 10.1002/nme.668.  Google Scholar

[7]

Z. Chen, Expanded mixed element methods for linear second-order elliptic problems. Ⅰ, RAIRO Modél. Math. Anal. Numér., 32 (1998), 479-499.  doi: 10.1051/m2an/1998320404791.  Google Scholar

[8]

P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Studies in Mathematics and its Applications, 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. doi: 10.1137/1.9780898719208.  Google Scholar

[9]

X. Dai and X. Cheng, A two-grid method based on Newton iteration for the Navier–Stokes equations, J. Comput. Appl. Math., 220 (2008), 566-573.  doi: 10.1016/j.cam.2007.09.002.  Google Scholar

[10]

C. N. DawsonM. F. Wheeler and C. S. Woodward, A two-grid finite difference scheme for nonlinear parabolic equations, SIAM J. Numer. Anal., 35 (1998), 435-452.  doi: 10.1137/S0036142995293493.  Google Scholar

[11]

J. Douglas Jr. and J. E. Roberts, Global estimates for mixed methods for second order elliptic equations, Math. Comp., 44 (1985), 39-52.  doi: 10.1090/S0025-5718-1985-0771029-9.  Google Scholar

[12]

J. Douglas Jr. and T. F. Russell, Numerical methods for convention-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. Numer. Anal., 19 (1982), 871-885.  doi: 10.1137/0719063.  Google Scholar

[13]

J. Douglas Jr. and Y. Yuan, Finite difference methods for the transient behavior of a semiconductor device, Mat. Apl. Comput., 6 (1987), 25-37.   Google Scholar

[14]

H. K. Gummel, A self-consistent iterative scheme for one-dimensional steady-state transistor calculations, IEEE Trans. Electron Devices, 11 (1964), 455-465.  doi: 10.1109/T-ED.1964.15364.  Google Scholar

[15]

T. I. Seidmann, Time-dependent solutions of a nonlinear system arising in semiconductor theory. Ⅱ. Boundaries and periodicity, Nonlinear Anal., 10 (1986), 491-502.  doi: 10.1016/0362-546X(86)90054-4.  Google Scholar

[16]

Y. WangY. ChenY. Huang and Y. Liu, Two-grid methods for semi-linear elliptic interface problems by immersed finite element methods, Appl. Math. Mech. (English Ed.), 40 (2019), 1657-1676.  doi: 10.1007/s10483-019-2538-7.  Google Scholar

[17]

M. F. Wheeler, A priori $L_{2}$ error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. Numer. Anal., 10 (1973), 723-759.  doi: 10.1137/0710062.  Google Scholar

[18]

J. Xu, A novel two-grid method for semilinear equations, SIAM J. Sci. Comput., 15 (1994), 231-237.  doi: 10.1137/0915016.  Google Scholar

[19]

J. Xu, Two-grid discretization techniques for linear and nonlinear PDEs, SIAM J. Numer. Anal., 33 (1996), 1759-1777.  doi: 10.1137/S0036142992232949.  Google Scholar

[20]

C. Xu and T. Hou, Superclose analysis of a two-grid finite element scheme for semilinear parabolic integro-differential equations, Electron. Res. Arch., 28 (2020), 897-910.  doi: 10.3934/era.2020047.  Google Scholar

[21]

Q. Yang, A modified upwind finite volume scheme for semiconductor devices, J. Systems Sci. Math. Sci., 28 (2008), 725-738.   Google Scholar

[22]

Q. Yang and Y. Yuan, An approximation of semiconductor device by mixed finite element method and characteristics-mixed finite element method, Appl. Math. Comput., 225 (2013), 407-424.  doi: 10.1016/j.amc.2013.09.067.  Google Scholar

[23]

J. YuH. ZhengF. Shi and R. Zhao, Two-grid finite element method for the stabilization of mixed Stokes-Darcy model, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 387-402.  doi: 10.3934/dcdsb.2018109.  Google Scholar

[24]

Y. Yuan, Finite difference method and analysis for three-dimensional semiconductor device of heat conduction, Sci. China Ser. A, 39 (1996), 1140-1151.   Google Scholar

[25]

Y. R. Yuan, A mixed finite element method for the transient behavior of a semiconductor device, Gaoxiao Yingyong Shuxue Xuebao, 7 (1992), 452-463.   Google Scholar

[26]

Y. R. Yuan, Characteristic finite element method and analysis for numerical simulation of semiconductor devices, Acta Math. Sci. (Chinese), 13 (1993), 241-251.   Google Scholar

[27]

M. Zlámal, Finite element solution of the fundamental equations of semiconductor devices. I, Math. Comp., 46 (1986), 27-43.  doi: 10.1090/S0025-5718-1986-0815829-6.  Google Scholar

show all references

References:
[1]

R. E. BankW. M. CoughranW. FichtnerE. H. GrosseD. J. Rose and R. K. Smith, Transient simulation of silicon devices and circuits, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, 4 (1985), 436-451.  doi: 10.1109/TCAD.1985.1270142.  Google Scholar

[2]

S. C. Brenner and L. Ridgway Scott, The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, 15, Springer, New York, 2008. doi: 10.1007/978-0-387-75934-0.  Google Scholar

[3]

F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge, 8 (1974), 129–151. doi: 10.1051/m2an/197408R201291.  Google Scholar

[4]

C. ChenM. Yang and C. Bi, Two-grid methods for finite volume element approximations of nonlinear parabolic equations, J. Comput. Appl. Math., 228 (2009), 123-132.  doi: 10.1016/j.cam.2008.09.001.  Google Scholar

[5]

Y. Chen and H. Hu, Two-grid method for miscible displacement problem by mixed finite element methods and mixed finite element method of characteristics, Commun. Comput. Phys., 19 (2016), 1503-1528.  doi: 10.4208/cicp.scpde14.46s.  Google Scholar

[6]

Y. ChenY. Huang and D. Yu, A two-grid method for expanded mixed finite-element solution of semilinear reaction-diffusion equations, Internat. J. Numer. Methods Engrg., 57 (2003), 193-209.  doi: 10.1002/nme.668.  Google Scholar

[7]

Z. Chen, Expanded mixed element methods for linear second-order elliptic problems. Ⅰ, RAIRO Modél. Math. Anal. Numér., 32 (1998), 479-499.  doi: 10.1051/m2an/1998320404791.  Google Scholar

[8]

P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Studies in Mathematics and its Applications, 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. doi: 10.1137/1.9780898719208.  Google Scholar

[9]

X. Dai and X. Cheng, A two-grid method based on Newton iteration for the Navier–Stokes equations, J. Comput. Appl. Math., 220 (2008), 566-573.  doi: 10.1016/j.cam.2007.09.002.  Google Scholar

[10]

C. N. DawsonM. F. Wheeler and C. S. Woodward, A two-grid finite difference scheme for nonlinear parabolic equations, SIAM J. Numer. Anal., 35 (1998), 435-452.  doi: 10.1137/S0036142995293493.  Google Scholar

[11]

J. Douglas Jr. and J. E. Roberts, Global estimates for mixed methods for second order elliptic equations, Math. Comp., 44 (1985), 39-52.  doi: 10.1090/S0025-5718-1985-0771029-9.  Google Scholar

[12]

J. Douglas Jr. and T. F. Russell, Numerical methods for convention-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. Numer. Anal., 19 (1982), 871-885.  doi: 10.1137/0719063.  Google Scholar

[13]

J. Douglas Jr. and Y. Yuan, Finite difference methods for the transient behavior of a semiconductor device, Mat. Apl. Comput., 6 (1987), 25-37.   Google Scholar

[14]

H. K. Gummel, A self-consistent iterative scheme for one-dimensional steady-state transistor calculations, IEEE Trans. Electron Devices, 11 (1964), 455-465.  doi: 10.1109/T-ED.1964.15364.  Google Scholar

[15]

T. I. Seidmann, Time-dependent solutions of a nonlinear system arising in semiconductor theory. Ⅱ. Boundaries and periodicity, Nonlinear Anal., 10 (1986), 491-502.  doi: 10.1016/0362-546X(86)90054-4.  Google Scholar

[16]

Y. WangY. ChenY. Huang and Y. Liu, Two-grid methods for semi-linear elliptic interface problems by immersed finite element methods, Appl. Math. Mech. (English Ed.), 40 (2019), 1657-1676.  doi: 10.1007/s10483-019-2538-7.  Google Scholar

[17]

M. F. Wheeler, A priori $L_{2}$ error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. Numer. Anal., 10 (1973), 723-759.  doi: 10.1137/0710062.  Google Scholar

[18]

J. Xu, A novel two-grid method for semilinear equations, SIAM J. Sci. Comput., 15 (1994), 231-237.  doi: 10.1137/0915016.  Google Scholar

[19]

J. Xu, Two-grid discretization techniques for linear and nonlinear PDEs, SIAM J. Numer. Anal., 33 (1996), 1759-1777.  doi: 10.1137/S0036142992232949.  Google Scholar

[20]

C. Xu and T. Hou, Superclose analysis of a two-grid finite element scheme for semilinear parabolic integro-differential equations, Electron. Res. Arch., 28 (2020), 897-910.  doi: 10.3934/era.2020047.  Google Scholar

[21]

Q. Yang, A modified upwind finite volume scheme for semiconductor devices, J. Systems Sci. Math. Sci., 28 (2008), 725-738.   Google Scholar

[22]

Q. Yang and Y. Yuan, An approximation of semiconductor device by mixed finite element method and characteristics-mixed finite element method, Appl. Math. Comput., 225 (2013), 407-424.  doi: 10.1016/j.amc.2013.09.067.  Google Scholar

[23]

J. YuH. ZhengF. Shi and R. Zhao, Two-grid finite element method for the stabilization of mixed Stokes-Darcy model, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 387-402.  doi: 10.3934/dcdsb.2018109.  Google Scholar

[24]

Y. Yuan, Finite difference method and analysis for three-dimensional semiconductor device of heat conduction, Sci. China Ser. A, 39 (1996), 1140-1151.   Google Scholar

[25]

Y. R. Yuan, A mixed finite element method for the transient behavior of a semiconductor device, Gaoxiao Yingyong Shuxue Xuebao, 7 (1992), 452-463.   Google Scholar

[26]

Y. R. Yuan, Characteristic finite element method and analysis for numerical simulation of semiconductor devices, Acta Math. Sci. (Chinese), 13 (1993), 241-251.   Google Scholar

[27]

M. Zlámal, Finite element solution of the fundamental equations of semiconductor devices. I, Math. Comp., 46 (1986), 27-43.  doi: 10.1090/S0025-5718-1986-0815829-6.  Google Scholar

Figure 1.  The exact solution $ e^{n} $, $ h = 1/64 $, $ n = 100 $
Figure 2.  The exact solution $ p^{n} $, $ h = 1/64 $, $ n = 100 $
Figure 3.  The exact solution $ \psi^{n} $, $ h = 1/64 $, $ n = 100 $
Figure 4.  Finite element solution $ e^{n}_{h} $, $ h = 1/64 $, $ n = 100 $
Figure 5.  Finite element solution $ p^{n}_{h} $, $ h = 1/64 $, $ n = 100 $
Figure 6.  Finite element solution $ \psi^{n}_{h} $, $ h = 1/64 $, $ n = 100 $
Figure 7.  Two-grid solution $ E^{n}_{h} $, $ H = 1/8 $, $ h = 1/64 $, $ n = 100 $
Figure 8.  Two-grid solution $ P^{n}_{h} $, $ H = 1/8 $, $ h = 1/64 $, $ n = 100 $
Figure 9.  Two-grid solution $ \Psi^{n}_{h} $, $ H = 1/8 $, $ h = 1/64 $, $ n = 100 $
Figure 10.  Order of finite element solution $ e^{n}_{h} $, $ n = 100 $
Figure 11.  Order of finite element solution $ p^{n}_{h} $, $ n = 100 $
Figure 12.  Order of finite element solution $ {\boldsymbol{u}}^{n}_h $, $ n = 100 $
Figure 13.  Order of finite element solution $ \psi^{n}_{h} $, $ n = 100 $
Table 1.  Error and CPU time of the finite element method for $ n = 100 $
$ h $ $ \|e^n-e^n_h\| $ $ \|p^n-p^n_h\| $ $ \|\psi^n-\psi^n_h\| $ $ \|{\boldsymbol{u}}^n-{\boldsymbol{u}}^n_h\| $ CPU time
$ \frac{1}{4} $ 2.0125e-2 4.1448e-3 4.6324e-4 2.4411e-3 0.4850s
$ \frac{1}{8} $ 6.3665e-3 1.1304e-3 2.3741e-4 1.2207e-3 1.0107s
$ \frac{1}{16} $ 1.6748e-3 3.1703e-4 1.1935e-4 6.0937e-4 3.4394s
$ \frac{1}{32} $ 4.0476e-4 1.1037e-4 5.9754e-5 3.0453e-4 15.1790s
$ \frac{1}{64} $ 9.3634e-5 5.9437e-5 2.9886e-5 1.5224e-4 74.9759s
$ h $ $ \|e^n-e^n_h\| $ $ \|p^n-p^n_h\| $ $ \|\psi^n-\psi^n_h\| $ $ \|{\boldsymbol{u}}^n-{\boldsymbol{u}}^n_h\| $ CPU time
$ \frac{1}{4} $ 2.0125e-2 4.1448e-3 4.6324e-4 2.4411e-3 0.4850s
$ \frac{1}{8} $ 6.3665e-3 1.1304e-3 2.3741e-4 1.2207e-3 1.0107s
$ \frac{1}{16} $ 1.6748e-3 3.1703e-4 1.1935e-4 6.0937e-4 3.4394s
$ \frac{1}{32} $ 4.0476e-4 1.1037e-4 5.9754e-5 3.0453e-4 15.1790s
$ \frac{1}{64} $ 9.3634e-5 5.9437e-5 2.9886e-5 1.5224e-4 74.9759s
Table 2.  Error and CPU time of the two-grid method for $ n = 100 $, $ H = \frac{1}{8} $ with different $ h = \frac{1}{16}, \frac{1}{32}, \frac{1}{64} $
$ H $ $ h $ $ \|e^n-E^n_h\| $ $ \|p^n-P^n_h\| $ $ \|\psi^{n}-\Psi^{n}_{h}\| $ $ \|{\boldsymbol{u}}^n-{\boldsymbol{U}}^n_h\| $ CPU time
$ \frac{1}{8} $ $ \frac{1}{16} $ 1.6698e-3 3.3035e-4 1.1935e-4 6.0937e-4 1.0793s
$ \frac{1}{8} $ $ \frac{1}{32} $ 4.0302e-4 1.1523e-4 5.9754e-5 3.0453e-4 4.1308s
$ \frac{1}{8} $ $ \frac{1}{64} $ 9.7872e-5 6.4727e-5 2.9886e-5 1.5224e-4 20.4816s
$ H $ $ h $ $ \|e^n-E^n_h\| $ $ \|p^n-P^n_h\| $ $ \|\psi^{n}-\Psi^{n}_{h}\| $ $ \|{\boldsymbol{u}}^n-{\boldsymbol{U}}^n_h\| $ CPU time
$ \frac{1}{8} $ $ \frac{1}{16} $ 1.6698e-3 3.3035e-4 1.1935e-4 6.0937e-4 1.0793s
$ \frac{1}{8} $ $ \frac{1}{32} $ 4.0302e-4 1.1523e-4 5.9754e-5 3.0453e-4 4.1308s
$ \frac{1}{8} $ $ \frac{1}{64} $ 9.7872e-5 6.4727e-5 2.9886e-5 1.5224e-4 20.4816s
Table 3.  Error and CPU time of the two-grid method for $ n = 100 $, and $ h = H^{2} = \frac{1}{4}, \frac{1}{16}, \frac{1}{64} $
$ H $ $ h $ $ \|e^n-E^n_h\| $ $ \|p^n-P^n_h\| $ $ \|\psi^{n}-\Psi^{n}_{h}\| $ $ \|{\boldsymbol{u}}^n-{\boldsymbol{U}}^n_h\| $ CPU time
$ \frac{1}{2} $ $ \frac{1}{4} $ 2.0132e-2 4.1526e-3 4.6324e-4 2.4411e-3 0.1774s
$ \frac{1}{4} $ $ \frac{1}{16} $ 1.6698e-3 3.3035e-4 1.1935e-4 6.0937e-4 1.0310s
$ \frac{1}{8} $ $ \frac{1}{64} $ 9.7872e-5 6.4727e-5 2.9886e-5 1.5224e-4 20.4816s
$ H $ $ h $ $ \|e^n-E^n_h\| $ $ \|p^n-P^n_h\| $ $ \|\psi^{n}-\Psi^{n}_{h}\| $ $ \|{\boldsymbol{u}}^n-{\boldsymbol{U}}^n_h\| $ CPU time
$ \frac{1}{2} $ $ \frac{1}{4} $ 2.0132e-2 4.1526e-3 4.6324e-4 2.4411e-3 0.1774s
$ \frac{1}{4} $ $ \frac{1}{16} $ 1.6698e-3 3.3035e-4 1.1935e-4 6.0937e-4 1.0310s
$ \frac{1}{8} $ $ \frac{1}{64} $ 9.7872e-5 6.4727e-5 2.9886e-5 1.5224e-4 20.4816s
[1]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[2]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[3]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[4]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[5]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[6]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[7]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[8]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[9]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[10]

Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263

[11]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[12]

Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149

[13]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[14]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[15]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[16]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[17]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[18]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[19]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[20]

Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200

 Impact Factor: 0.263

Metrics

  • PDF downloads (87)
  • HTML views (216)
  • Cited by (0)

Other articles
by authors

[Back to Top]