• Previous Article
    A weak Galerkin finite element method for nonlinear conservation laws
  • ERA Home
  • This Issue
  • Next Article
    Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method
March  2021, 29(1): 1881-1895. doi: 10.3934/era.2020096

Viscosity robust weak Galerkin finite element methods for Stokes problems

1. 

Craft & Hawkins Department of Petroleum Engineering, Louisiana State University, 2245 Patrick F Taylor Hall, Baton Rouge, LA, 70803, USA

2. 

Department of Mathematics, University of Georgia, Athens, GA, 30605, USA

* Corresponding author: Lin Mu

Received  April 2020 Revised  July 2020 Published  March 2021 Early access  September 2020

In this paper, we develop a viscosity robust weak Galerkin finite element scheme for Stokes equations. The major idea for achieving pressure-independent energy-error estimate is to use a divergence preserving velocity reconstruction operator in the discretization of the right hand side body force. The optimal convergence results for velocity and pressure have been established in this paper. Finally, numerical examples are presented for validating the theoretical conclusions.

Citation: Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096
References:
[1]

C. BrenneckeA. LinkeC. Merdon and J. Schöberl, Optimal and pressure-independent $L^2$ velocity error estimates for a modified Crouzeix-Raviart Stokes element with BDM reconstructions, J. Comput. Math., 33 (2015), 191-208.  doi: 10.4208/jcm.1411-m4499.  Google Scholar

[2]

D. A. Di PietroA. ErnA. Linke and F. Schieweck, A discontinuous skeletal method for the viscosity-dependent Stokes problem, Comput. Methods Appl. Mech. Engrg., 306 (2016), 175-195.  doi: 10.1016/j.cma.2016.03.033.  Google Scholar

[3]

J. Guzmán and M. Neilan, Conforming and divergence-free Stokes elements on general triangular meshes, Math. Comp., 83 (2014), 15-36.  doi: 10.1090/S0025-5718-2013-02753-6.  Google Scholar

[4]

C. Lehrenfeld and J. Schöberl, High order exactly divergence-free hybrid discontinuous Galerkin methods for unsteady incompressible flows, Comput. Methods Appl. Mech. Engrg., 307 (2016), 339-361.  doi: 10.1016/j.cma.2016.04.025.  Google Scholar

[5]

A. Linke, A divergence-free velocity reconstruction for incompressible flows, C. R. Math. Acad. Sci. Paris, 350 (2012), 837-840.  doi: 10.1016/j.crma.2012.10.010.  Google Scholar

[6]

A. Linke, On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime, Comput. Methods Appl. Mech. Engrg., 268 (2014), 782-800.  doi: 10.1016/j.cma.2013.10.011.  Google Scholar

[7]

A. LinkeG. Matthies and L. Tobiska, Robust arbitrary order mixed finite element methods for the incompressible Stokes equations with pressure independent velocity errors, ESAIM Math. Model. Numer. Anal., 50 (2016), 289-309.  doi: 10.1051/m2an/2015044.  Google Scholar

[8]

Y. Liu and J. Wang, Simplified weak Galerkin and new finite difference schemes for the Stokes equation, J. Comput. Appl. Math., 361 (2019), 176-206.  doi: 10.1016/j.cam.2019.04.024.  Google Scholar

[9]

L. Mu, J. Wang, Y. Wang and X. Ye, A weak Galerkin mixed finite element method for biharmonic equations, in Numerical Solution of Partial Differential Equations: Theory, Algorithms, and Their Applications, Springer Proc. Math. Stat., 45, Springer, New York, 2013,247-277. doi: 10.1007/978-1-4614-7172-1_13.  Google Scholar

[10]

L. MuJ. Wang and X. Ye, Effective implementation of the weak Galerkin finite element methods for the biharmonic equation, Comput. Math. Appl., 74 (2017), 1215-1222.  doi: 10.1016/j.camwa.2017.06.002.  Google Scholar

[11]

T. TianQ. Zhai and R. Zhang, A new modified weak Galerkin finite element scheme for solving the stationary Stokes equations, J. Comput. Appl. Math., 329 (2018), 268-279.  doi: 10.1016/j.cam.2017.01.021.  Google Scholar

[12]

J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.  doi: 10.1016/j.cam.2012.10.003.  Google Scholar

[13]

J. Wang and X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42 (2016), 155-174.  doi: 10.1007/s10444-015-9415-2.  Google Scholar

[14]

S. Zhang, A new family of stable mixed finite elements for the 3D Stokes equations, Math. Comp., 74 (2005), 543-554.  doi: 10.1090/S0025-5718-04-01711-9.  Google Scholar

show all references

References:
[1]

C. BrenneckeA. LinkeC. Merdon and J. Schöberl, Optimal and pressure-independent $L^2$ velocity error estimates for a modified Crouzeix-Raviart Stokes element with BDM reconstructions, J. Comput. Math., 33 (2015), 191-208.  doi: 10.4208/jcm.1411-m4499.  Google Scholar

[2]

D. A. Di PietroA. ErnA. Linke and F. Schieweck, A discontinuous skeletal method for the viscosity-dependent Stokes problem, Comput. Methods Appl. Mech. Engrg., 306 (2016), 175-195.  doi: 10.1016/j.cma.2016.03.033.  Google Scholar

[3]

J. Guzmán and M. Neilan, Conforming and divergence-free Stokes elements on general triangular meshes, Math. Comp., 83 (2014), 15-36.  doi: 10.1090/S0025-5718-2013-02753-6.  Google Scholar

[4]

C. Lehrenfeld and J. Schöberl, High order exactly divergence-free hybrid discontinuous Galerkin methods for unsteady incompressible flows, Comput. Methods Appl. Mech. Engrg., 307 (2016), 339-361.  doi: 10.1016/j.cma.2016.04.025.  Google Scholar

[5]

A. Linke, A divergence-free velocity reconstruction for incompressible flows, C. R. Math. Acad. Sci. Paris, 350 (2012), 837-840.  doi: 10.1016/j.crma.2012.10.010.  Google Scholar

[6]

A. Linke, On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime, Comput. Methods Appl. Mech. Engrg., 268 (2014), 782-800.  doi: 10.1016/j.cma.2013.10.011.  Google Scholar

[7]

A. LinkeG. Matthies and L. Tobiska, Robust arbitrary order mixed finite element methods for the incompressible Stokes equations with pressure independent velocity errors, ESAIM Math. Model. Numer. Anal., 50 (2016), 289-309.  doi: 10.1051/m2an/2015044.  Google Scholar

[8]

Y. Liu and J. Wang, Simplified weak Galerkin and new finite difference schemes for the Stokes equation, J. Comput. Appl. Math., 361 (2019), 176-206.  doi: 10.1016/j.cam.2019.04.024.  Google Scholar

[9]

L. Mu, J. Wang, Y. Wang and X. Ye, A weak Galerkin mixed finite element method for biharmonic equations, in Numerical Solution of Partial Differential Equations: Theory, Algorithms, and Their Applications, Springer Proc. Math. Stat., 45, Springer, New York, 2013,247-277. doi: 10.1007/978-1-4614-7172-1_13.  Google Scholar

[10]

L. MuJ. Wang and X. Ye, Effective implementation of the weak Galerkin finite element methods for the biharmonic equation, Comput. Math. Appl., 74 (2017), 1215-1222.  doi: 10.1016/j.camwa.2017.06.002.  Google Scholar

[11]

T. TianQ. Zhai and R. Zhang, A new modified weak Galerkin finite element scheme for solving the stationary Stokes equations, J. Comput. Appl. Math., 329 (2018), 268-279.  doi: 10.1016/j.cam.2017.01.021.  Google Scholar

[12]

J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.  doi: 10.1016/j.cam.2012.10.003.  Google Scholar

[13]

J. Wang and X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42 (2016), 155-174.  doi: 10.1007/s10444-015-9415-2.  Google Scholar

[14]

S. Zhang, A new family of stable mixed finite elements for the 3D Stokes equations, Math. Comp., 74 (2005), 543-554.  doi: 10.1090/S0025-5718-04-01711-9.  Google Scholar

Figure 1.  Example 4.1: solution from Algorithm 2.2 (top); Algorithm 2.1 (bottom)
Figure 2.  Example 4.2: Error profiles and convergence results for $ {{|||}}\cdot{{|||}} $-norm on triangular mesh: standard scheme Algorithm 2.2 (left); new scheme Algorithm 2.1 (right)
Figure 3.  Example 4.2: Error profiles and convergence results for $ L^2 $-norm on triangular mesh: standard scheme Algorithm 2.2 (left); new scheme Algorithm 2.1 (right)
Figure 4.  Example 4.2: Error profiles and convergence results for $ \|p-p_h\| $ on triangular mesh: standard scheme Algorithm 2.2 (left); new scheme Algorithm 2.1 (right)
Figure 5.  Example 4.3: Profile for viscosity (left); magnitude plot for velocity by Algorithm 2.1 (middle); magnitude plot for Algorithm 2.2 (right). Top row illustrates the results for Test Case 1; Bottom row illustrates the results for Test Case 2
Table 1.  Example 4.4: Numerical results and convergence test for $ k = 0 $
Algorithm 2.1 Algorithm 2.2
$ 1/h $ $ {{|||}} {\bf e}_h{{|||}} $ Rate $ \| {\bf e}_h\| $ Rate $ \|\epsilon_h\| $ Rate $ {{|||}} {\bf e}_h{{|||}} $ Rate $ \| {\bf e}_h\| $ Rate $ \|\epsilon_h\| $ Rate
$ \nu=1 $
2 2.69E+2 7.22 1.11E+2 2.69E+2 7.22E 1.11E+2
4 2.35E+2 0.2 3.46 1.1 5.70E+1 1.0 2.35E+2 0.2 3.46 1.1 5.70E+1 1.0
8 1.54E+2 0.6 1.14 1.6 2.81E+1 1.0 1.54E+2 0.6 1.14 1.60 2.81E+1 1.0
16 7.65E+1 1.0 2.95E-1 2.0 1.31E+1 1.1 7.65E+1 1.0 2.95E-1 2.0 1.31E+1 1.1
32 3.83E+1 1.0 7.39E-2 2.0 6.55 1.0 3.83E+1 1.0 7.38E-2 2.0 6.55 1.0
$ \nu=1e-2 $
2 2.69E+2 7.22 1.19 2.75E+2 7.74 1.12
4 2.35E+2 0.2 3.46 1.1 5.77E-1 1.1 2.35E+2 0.2 3.46 1.2 5.70E-1 1.0
8 1.54E+2 0.6 1.14 1.6 2.81E-1 1.0 1.68E+2 0.5 1.27 1.5 2.88E-1 1.0
16 7.65E+1 1.0 2.95E-1 2.0 1.30E-1 1.1 7.86E+1 1.1 3.06E-1 2.1 1.33E-1 1.1
32 3.83E+1 1.0 7.38E-2 2.0 6.50E-2 1.0 3.93E+1 1.0 7.65E-2 2.0 6.65E-2 1.0
$ \nu=1e-4 $
2 2.69E+2 7.22 1.19E-2 8.92E+3 3.16E+2 1.25E-1
4 2.35E+2 0.2 3.46 1.1 5.77E-3 1.1 5.34E+3 0.7 9.40E+1 1.8 7.15E-2 0.8
8 1.54E+2 0.6 1.14 1.6 2.81E-3 1.0 4.29E+3 0.3 3.53E+1 1.4 4.53E-2 0.7
16 7.65E+1 1.0 2.95E-1 2.0 1.30E-3 1.1 2.11E+3 1.0 9.11 2.0 1.62E-2 1.5
32 3.83E+1 1.0 7.38E-2 2.0 6.50E-4 1.0 1.06E+3 1.0 2.28 2.0 8.10E-3 1.0
Algorithm 2.1 Algorithm 2.2
$ 1/h $ $ {{|||}} {\bf e}_h{{|||}} $ Rate $ \| {\bf e}_h\| $ Rate $ \|\epsilon_h\| $ Rate $ {{|||}} {\bf e}_h{{|||}} $ Rate $ \| {\bf e}_h\| $ Rate $ \|\epsilon_h\| $ Rate
$ \nu=1 $
2 2.69E+2 7.22 1.11E+2 2.69E+2 7.22E 1.11E+2
4 2.35E+2 0.2 3.46 1.1 5.70E+1 1.0 2.35E+2 0.2 3.46 1.1 5.70E+1 1.0
8 1.54E+2 0.6 1.14 1.6 2.81E+1 1.0 1.54E+2 0.6 1.14 1.60 2.81E+1 1.0
16 7.65E+1 1.0 2.95E-1 2.0 1.31E+1 1.1 7.65E+1 1.0 2.95E-1 2.0 1.31E+1 1.1
32 3.83E+1 1.0 7.39E-2 2.0 6.55 1.0 3.83E+1 1.0 7.38E-2 2.0 6.55 1.0
$ \nu=1e-2 $
2 2.69E+2 7.22 1.19 2.75E+2 7.74 1.12
4 2.35E+2 0.2 3.46 1.1 5.77E-1 1.1 2.35E+2 0.2 3.46 1.2 5.70E-1 1.0
8 1.54E+2 0.6 1.14 1.6 2.81E-1 1.0 1.68E+2 0.5 1.27 1.5 2.88E-1 1.0
16 7.65E+1 1.0 2.95E-1 2.0 1.30E-1 1.1 7.86E+1 1.1 3.06E-1 2.1 1.33E-1 1.1
32 3.83E+1 1.0 7.38E-2 2.0 6.50E-2 1.0 3.93E+1 1.0 7.65E-2 2.0 6.65E-2 1.0
$ \nu=1e-4 $
2 2.69E+2 7.22 1.19E-2 8.92E+3 3.16E+2 1.25E-1
4 2.35E+2 0.2 3.46 1.1 5.77E-3 1.1 5.34E+3 0.7 9.40E+1 1.8 7.15E-2 0.8
8 1.54E+2 0.6 1.14 1.6 2.81E-3 1.0 4.29E+3 0.3 3.53E+1 1.4 4.53E-2 0.7
16 7.65E+1 1.0 2.95E-1 2.0 1.30E-3 1.1 2.11E+3 1.0 9.11 2.0 1.62E-2 1.5
32 3.83E+1 1.0 7.38E-2 2.0 6.50E-4 1.0 1.06E+3 1.0 2.28 2.0 8.10E-3 1.0
[1]

Xiaomeng Li, Qiang Xu, Ailing Zhu. Weak Galerkin mixed finite element methods for parabolic equations with memory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 513-531. doi: 10.3934/dcdss.2019034

[2]

Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, 2021, 29 (3) : 2489-2516. doi: 10.3934/era.2020126

[3]

Wolf-Jüergen Beyn, Janosch Rieger. Galerkin finite element methods for semilinear elliptic differential inclusions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 295-312. doi: 10.3934/dcdsb.2013.18.295

[4]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[5]

Lijuan Wang, Jun Zou. Error estimates of finite element methods for parameter identifications in elliptic and parabolic systems. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1641-1670. doi: 10.3934/dcdsb.2010.14.1641

[6]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2021, 26 (10) : 5217-5226. doi: 10.3934/dcdsb.2020340

[7]

Hui Peng, Qilong Zhai. Weak Galerkin method for the Stokes equations with damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021112

[8]

Alex Bihlo, James Jackaman, Francis Valiquette. On the development of symmetry-preserving finite element schemes for ordinary differential equations. Journal of Computational Dynamics, 2020, 7 (2) : 339-368. doi: 10.3934/jcd.2020014

[9]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[10]

Guanrong Li, Yanping Chen, Yunqing Huang. A hybridized weak Galerkin finite element scheme for general second-order elliptic problems. Electronic Research Archive, 2020, 28 (2) : 821-836. doi: 10.3934/era.2020042

[11]

A. Naga, Z. Zhang. The polynomial-preserving recovery for higher order finite element methods in 2D and 3D. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 769-798. doi: 10.3934/dcdsb.2005.5.769

[12]

Tao Lin, Yanping Lin, Weiwei Sun. Error estimation of a class of quadratic immersed finite element methods for elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 807-823. doi: 10.3934/dcdsb.2007.7.807

[13]

Ruishu Wang, Lin Mu, Xiu Ye. A locking free Reissner-Mindlin element with weak Galerkin rotations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 351-361. doi: 10.3934/dcdsb.2018086

[14]

Juan Wen, Yaling He, Yinnian He, Kun Wang. Stabilized finite element methods based on multiscale enrichment for Allen-Cahn and Cahn-Hilliard equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021074

[15]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, 2021, 29 (3) : 2375-2389. doi: 10.3934/era.2020120

[16]

Runchang Lin. A robust finite element method for singularly perturbed convection-diffusion problems. Conference Publications, 2009, 2009 (Special) : 496-505. doi: 10.3934/proc.2009.2009.496

[17]

Jie Shen, Xiaofeng Yang. Error estimates for finite element approximations of consistent splitting schemes for incompressible flows. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 663-676. doi: 10.3934/dcdsb.2007.8.663

[18]

Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222

[19]

Derrick Jones, Xu Zhang. A conforming-nonconforming mixed immersed finite element method for unsteady Stokes equations with moving interfaces. Electronic Research Archive, , () : -. doi: 10.3934/era.2021032

[20]

Jean-Pierre Raymond. Stokes and Navier-Stokes equations with a nonhomogeneous divergence condition. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1537-1564. doi: 10.3934/dcdsb.2010.14.1537

2020 Impact Factor: 1.833

Article outline

Figures and Tables

[Back to Top]