doi: 10.3934/era.2020097

A weak Galerkin finite element method for nonlinear conservation laws

1. 

Department of Mathematics, University of Arkansas at Little Rock, Little Rock, AR 72204, USA

2. 

Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA

3. 

College of Mathematics, Physics and Information Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China

* Corresponding author: Xiu Ye

Received  April 2020 Revised  July 2020 Published  September 2020

Fund Project: The first author is supported in part by NSF grant DMS-1620016. The third author is supported in part by Zhejiang provincial NSF of China grant LY19A010008

A weak Galerkin (WG) finite element method is presented for nonlinear conservation laws. There are two built-in parameters in this WG framework. Different choices of the parameters will lead to different approaches for solving hyperbolic conservation laws. The convergence analysis is obtained for the forward Euler time discrete and the third order explicit TVDRK time discrete WG schemes respectively. The theoretical results are verified by numerical experiments.

Citation: Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, doi: 10.3934/era.2020097
References:
[1]

B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. Ⅱ. General framework, Math. Comp., 52 (1989), 411-435.  doi: 10.2307/2008474.  Google Scholar

[2]

B. Cockburn and C.-W. Shu, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput., 16 (2001), 173-261.  doi: 10.1023/A:1012873910884.  Google Scholar

[3]

S. GottliebC.-W. Shu and E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Rev., 43 (2001), 89-112.  doi: 10.1137/S003614450036757X.  Google Scholar

[4]

A. HartenB. EngquistS. Osher and S. R. Chakravarthy, Uniformly high-order accurate essentially non-oscillatory schemes. Ⅲ, J. Comput. Phys., 71 (1987), 231-303.  doi: 10.1016/0021-9991(87)90031-3.  Google Scholar

[5]

G. S. Jiang and C.-W. Shu, On cell entropy inequality for discontinuous Galerkin methods, Math. Comp., 62 (1994), 531-538.  doi: 10.1090/S0025-5718-1994-1223232-7.  Google Scholar

[6]

M.-Y. Kim, A discontinuous Galerkin method with Lagrange multiplier for hyperbolic conservation laws with boundary conditions, Comput. Math. Appl., 70 (2015), 488-506.  doi: 10.1016/j.camwa.2015.05.003.  Google Scholar

[7]

M.-Y. Kim, High order DG-DGLM method for hyperbolic conservation laws, Comput. Math. Appl., 75 (2018), 4458-4489.  doi: 10.1016/j.camwa.2018.03.043.  Google Scholar

[8]

J. LiX. Ye and S. Zhang, A weak Galerkin least-squares finite element method for div-curl systems, J. Comput. Phys., 363 (2018), 79-86.  doi: 10.1016/j.jcp.2018.02.036.  Google Scholar

[9]

G. LinJ. LiuL. Mu and X. Ye, Weak Galerkin finite element methods for Darcy flow: Anisotropy and heterogeneity, J. Comput. Phys., 276 (2014), 422-437.  doi: 10.1016/j.jcp.2014.07.001.  Google Scholar

[10]

R. LinX. YeS. Zhang and P. Zhu, A weak Galerkin finite element method for singularly perturbed convection-diffusion-reaction problems, SIAM J. Numer. Anal., 56 (2018), 1482-1497.  doi: 10.1137/17M1152528.  Google Scholar

[11]

X. MengC.-W. Shu and B. Wu, Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations, Math. Comp., 85 (2016), 1225-1261.  doi: 10.1090/mcom/3022.  Google Scholar

[12]

L. MuJ. Wang and X. Ye, A new weak Galerkin finite element method for the Helmholtz equation, IMA J. Numer. Anal., 35 (2015), 1228-1255.  doi: 10.1093/imanum/dru026.  Google Scholar

[13]

L. MuJ. Wang and X. Ye, Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes, Numer. Methods Partial Differential Equations, 30 (2014), 1003-1029.  doi: 10.1002/num.21855.  Google Scholar

[14]

L. MuJ. Wang and X. Ye, Weak Galerkin finite element methods on polytopal meshes, Int. J. Numer. Anal. Model., 12 (2015), 31-53.   Google Scholar

[15]

L. MuJ. WangX. Ye and S. Zhang, A weak Galerkin finite element method for the Maxwell equations, J. Sci. Comput., 65 (2015), 363-386.  doi: 10.1007/s10915-014-9964-4.  Google Scholar

[16]

L. MuJ. WangX. Ye and S. Zhao, A new weak Galerkin finite element method for elliptic interface problems, J. Comput. Phys., 325 (2016), 157-173.  doi: 10.1016/j.jcp.2016.08.024.  Google Scholar

[17]

S. ShieldsJ. Li and E. A. Machorro, Weak Galerkin methods for time-dependent Maxwell's equations, Comput. Math. Appl., 74 (2017), 2106-2124.  doi: 10.1016/j.camwa.2017.07.047.  Google Scholar

[18]

J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.  doi: 10.1016/j.cam.2012.10.003.  Google Scholar

[19]

J. Wang and X. Ye, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comp., 83 (2014), 2101-2126.  doi: 10.1090/S0025-5718-2014-02852-4.  Google Scholar

[20]

J. Wang and X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42 (2016), 155-174.  doi: 10.1007/s10444-015-9415-2.  Google Scholar

[21]

Q. ZhaiR. ZhangN. Malluwawadu and S. Hussain, The weak Galerkin method for linear hyperbolic equation, Commun. Comput. Phys., 24 (2018), 152-166.  doi: 10.4208/cicp.oa-2017-0052.  Google Scholar

[22]

Q. Zhang and C.-W. Shu, Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin methods for scalar conservation laws, SIAM J. Numer. Anal., 42 (2004), 641-666.  doi: 10.1137/S0036142902404182.  Google Scholar

[23]

Q. Zhang and C.-W. Shu, Stability analysis and a priori error estimates of the third order explicit Runge-Kutta discontinuous Galerkin method for scalar conservation laws, SIAM J. Numer. Anal., 48 (2010), 1038-1063.  doi: 10.1137/090771363.  Google Scholar

show all references

References:
[1]

B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. Ⅱ. General framework, Math. Comp., 52 (1989), 411-435.  doi: 10.2307/2008474.  Google Scholar

[2]

B. Cockburn and C.-W. Shu, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput., 16 (2001), 173-261.  doi: 10.1023/A:1012873910884.  Google Scholar

[3]

S. GottliebC.-W. Shu and E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Rev., 43 (2001), 89-112.  doi: 10.1137/S003614450036757X.  Google Scholar

[4]

A. HartenB. EngquistS. Osher and S. R. Chakravarthy, Uniformly high-order accurate essentially non-oscillatory schemes. Ⅲ, J. Comput. Phys., 71 (1987), 231-303.  doi: 10.1016/0021-9991(87)90031-3.  Google Scholar

[5]

G. S. Jiang and C.-W. Shu, On cell entropy inequality for discontinuous Galerkin methods, Math. Comp., 62 (1994), 531-538.  doi: 10.1090/S0025-5718-1994-1223232-7.  Google Scholar

[6]

M.-Y. Kim, A discontinuous Galerkin method with Lagrange multiplier for hyperbolic conservation laws with boundary conditions, Comput. Math. Appl., 70 (2015), 488-506.  doi: 10.1016/j.camwa.2015.05.003.  Google Scholar

[7]

M.-Y. Kim, High order DG-DGLM method for hyperbolic conservation laws, Comput. Math. Appl., 75 (2018), 4458-4489.  doi: 10.1016/j.camwa.2018.03.043.  Google Scholar

[8]

J. LiX. Ye and S. Zhang, A weak Galerkin least-squares finite element method for div-curl systems, J. Comput. Phys., 363 (2018), 79-86.  doi: 10.1016/j.jcp.2018.02.036.  Google Scholar

[9]

G. LinJ. LiuL. Mu and X. Ye, Weak Galerkin finite element methods for Darcy flow: Anisotropy and heterogeneity, J. Comput. Phys., 276 (2014), 422-437.  doi: 10.1016/j.jcp.2014.07.001.  Google Scholar

[10]

R. LinX. YeS. Zhang and P. Zhu, A weak Galerkin finite element method for singularly perturbed convection-diffusion-reaction problems, SIAM J. Numer. Anal., 56 (2018), 1482-1497.  doi: 10.1137/17M1152528.  Google Scholar

[11]

X. MengC.-W. Shu and B. Wu, Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations, Math. Comp., 85 (2016), 1225-1261.  doi: 10.1090/mcom/3022.  Google Scholar

[12]

L. MuJ. Wang and X. Ye, A new weak Galerkin finite element method for the Helmholtz equation, IMA J. Numer. Anal., 35 (2015), 1228-1255.  doi: 10.1093/imanum/dru026.  Google Scholar

[13]

L. MuJ. Wang and X. Ye, Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes, Numer. Methods Partial Differential Equations, 30 (2014), 1003-1029.  doi: 10.1002/num.21855.  Google Scholar

[14]

L. MuJ. Wang and X. Ye, Weak Galerkin finite element methods on polytopal meshes, Int. J. Numer. Anal. Model., 12 (2015), 31-53.   Google Scholar

[15]

L. MuJ. WangX. Ye and S. Zhang, A weak Galerkin finite element method for the Maxwell equations, J. Sci. Comput., 65 (2015), 363-386.  doi: 10.1007/s10915-014-9964-4.  Google Scholar

[16]

L. MuJ. WangX. Ye and S. Zhao, A new weak Galerkin finite element method for elliptic interface problems, J. Comput. Phys., 325 (2016), 157-173.  doi: 10.1016/j.jcp.2016.08.024.  Google Scholar

[17]

S. ShieldsJ. Li and E. A. Machorro, Weak Galerkin methods for time-dependent Maxwell's equations, Comput. Math. Appl., 74 (2017), 2106-2124.  doi: 10.1016/j.camwa.2017.07.047.  Google Scholar

[18]

J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.  doi: 10.1016/j.cam.2012.10.003.  Google Scholar

[19]

J. Wang and X. Ye, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comp., 83 (2014), 2101-2126.  doi: 10.1090/S0025-5718-2014-02852-4.  Google Scholar

[20]

J. Wang and X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42 (2016), 155-174.  doi: 10.1007/s10444-015-9415-2.  Google Scholar

[21]

Q. ZhaiR. ZhangN. Malluwawadu and S. Hussain, The weak Galerkin method for linear hyperbolic equation, Commun. Comput. Phys., 24 (2018), 152-166.  doi: 10.4208/cicp.oa-2017-0052.  Google Scholar

[22]

Q. Zhang and C.-W. Shu, Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin methods for scalar conservation laws, SIAM J. Numer. Anal., 42 (2004), 641-666.  doi: 10.1137/S0036142902404182.  Google Scholar

[23]

Q. Zhang and C.-W. Shu, Stability analysis and a priori error estimates of the third order explicit Runge-Kutta discontinuous Galerkin method for scalar conservation laws, SIAM J. Numer. Anal., 48 (2010), 1038-1063.  doi: 10.1137/090771363.  Google Scholar

Figure 1.  WG solution for Example 2, $ T = 1/\pi, \lambda_1 = 2,\lambda_2 = 1,N = 128 $
Figure 2.  The $ P_1 $ WG solution and DG solution for Example 3, $ T = 2\pi, N = 512 $
Table 1.  $ L^2 $ errors and corresponding convergence rates of Example 1. $ T = 2\pi $, $ \lambda_1 = \lambda_2 = 1 $
$ P_1 $ element $ P_2 $ element $ P_3 $ element
N $ \|u-u_0\| $ Rate $ \|u-u_0\| $ Rate $ \|u-u_0\| $ Rate
8 1.29E-01 3.36E-03 2.66E-04
16 3.02E-02 2.10 3.99E-04 3.08 1.94E-05 3.78
32 7.22E-03 2.06 4.93E-05 3.02 1.27E-06 3.93
64 1.78E-03 2.02 6.14E-06 3.00 8.06E-08 3.98
128 4.42E-04 2.01 7.67E-07 3.00 5.06E-09 4.00
$ P_1 $ element $ P_2 $ element $ P_3 $ element
N $ \|u-u_0\| $ Rate $ \|u-u_0\| $ Rate $ \|u-u_0\| $ Rate
8 1.29E-01 3.36E-03 2.66E-04
16 3.02E-02 2.10 3.99E-04 3.08 1.94E-05 3.78
32 7.22E-03 2.06 4.93E-05 3.02 1.27E-06 3.93
64 1.78E-03 2.02 6.14E-06 3.00 8.06E-08 3.98
128 4.42E-04 2.01 7.67E-07 3.00 5.06E-09 4.00
Table 2.  $ L^2 $ errors and corresponding convergence rates of Example 2. $ T = 0.2 $, $ \lambda_1 = \lambda_2 = 2.5 $
$ P_1 $ element $ P_2 $ element $ P_3 $ element
N $ \|u-u_0\| $ Rate $ \|u-u_0\| $ Rate $ \|u-u_0\| $ Rate
8 1.68E-02 6.60E-03 1.89E-03
16 6.11E-03 1.46 7.86E-04 3.07 2.22E-04 3.09
32 1.42E-03 2.10 1.63E-04 2.27 9.96E-06 4.48
64 3.49E-04 2.03 2.85E-05 2.51 8.19E-07 3.60
128 8.67E-05 2.01 4.98E-06 2.51 5.81E-08 3.82
$ P_1 $ element $ P_2 $ element $ P_3 $ element
N $ \|u-u_0\| $ Rate $ \|u-u_0\| $ Rate $ \|u-u_0\| $ Rate
8 1.68E-02 6.60E-03 1.89E-03
16 6.11E-03 1.46 7.86E-04 3.07 2.22E-04 3.09
32 1.42E-03 2.10 1.63E-04 2.27 9.96E-06 4.48
64 3.49E-04 2.03 2.85E-05 2.51 8.19E-07 3.60
128 8.67E-05 2.01 4.98E-06 2.51 5.81E-08 3.82
Table 3.  $ L^2 $ errors and corresponding convergence rates of Example 3. $ T = 2\pi $, $ \lambda_1 = 2,\lambda_2 = 1 $
$ P_1 $ element $ P_2 $ element
N $ \|u-u_0\| $ Rate $ \|u-u_0\| $ Rate
8 5.93E-01 4.23E-01
16 5.01E-01 0.24 3.25E-01 0.38
32 3.93E-01 0.35 2.52E-01 0.37
64 3.26E-01 0.27 1.98E-01 0.35
128 2.72E-01 0.26 1.58E-01 0.33
256 2.26E-01 0.27 1.27E-01 0.32
512 1.89E-01 0.26 1.03E-01 0.30
$ P_1 $ element $ P_2 $ element
N $ \|u-u_0\| $ Rate $ \|u-u_0\| $ Rate
8 5.93E-01 4.23E-01
16 5.01E-01 0.24 3.25E-01 0.38
32 3.93E-01 0.35 2.52E-01 0.37
64 3.26E-01 0.27 1.98E-01 0.35
128 2.72E-01 0.26 1.58E-01 0.33
256 2.26E-01 0.27 1.27E-01 0.32
512 1.89E-01 0.26 1.03E-01 0.30
[1]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[2]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[3]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[4]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[5]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[6]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[7]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[8]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[9]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[10]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[11]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[12]

Nalin Fonseka, Jerome Goddard II, Ratnasingham Shivaji, Byungjae Son. A diffusive weak Allee effect model with U-shaped emigration and matrix hostility. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020356

[13]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[14]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[15]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[16]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[17]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[18]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[19]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[20]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

 Impact Factor: 0.263

Metrics

  • PDF downloads (26)
  • HTML views (118)
  • Cited by (0)

Other articles
by authors

[Back to Top]