doi: 10.3934/era.2020097

A weak Galerkin finite element method for nonlinear conservation laws

1. 

Department of Mathematics, University of Arkansas at Little Rock, Little Rock, AR 72204, USA

2. 

Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA

3. 

College of Mathematics, Physics and Information Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China

* Corresponding author: Xiu Ye

Received  April 2020 Revised  July 2020 Published  September 2020

Fund Project: The first author is supported in part by NSF grant DMS-1620016. The third author is supported in part by Zhejiang provincial NSF of China grant LY19A010008

A weak Galerkin (WG) finite element method is presented for nonlinear conservation laws. There are two built-in parameters in this WG framework. Different choices of the parameters will lead to different approaches for solving hyperbolic conservation laws. The convergence analysis is obtained for the forward Euler time discrete and the third order explicit TVDRK time discrete WG schemes respectively. The theoretical results are verified by numerical experiments.

Citation: Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, doi: 10.3934/era.2020097
References:
[1]

B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. Ⅱ. General framework, Math. Comp., 52 (1989), 411-435.  doi: 10.2307/2008474.  Google Scholar

[2]

B. Cockburn and C.-W. Shu, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput., 16 (2001), 173-261.  doi: 10.1023/A:1012873910884.  Google Scholar

[3]

S. GottliebC.-W. Shu and E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Rev., 43 (2001), 89-112.  doi: 10.1137/S003614450036757X.  Google Scholar

[4]

A. HartenB. EngquistS. Osher and S. R. Chakravarthy, Uniformly high-order accurate essentially non-oscillatory schemes. Ⅲ, J. Comput. Phys., 71 (1987), 231-303.  doi: 10.1016/0021-9991(87)90031-3.  Google Scholar

[5]

G. S. Jiang and C.-W. Shu, On cell entropy inequality for discontinuous Galerkin methods, Math. Comp., 62 (1994), 531-538.  doi: 10.1090/S0025-5718-1994-1223232-7.  Google Scholar

[6]

M.-Y. Kim, A discontinuous Galerkin method with Lagrange multiplier for hyperbolic conservation laws with boundary conditions, Comput. Math. Appl., 70 (2015), 488-506.  doi: 10.1016/j.camwa.2015.05.003.  Google Scholar

[7]

M.-Y. Kim, High order DG-DGLM method for hyperbolic conservation laws, Comput. Math. Appl., 75 (2018), 4458-4489.  doi: 10.1016/j.camwa.2018.03.043.  Google Scholar

[8]

J. LiX. Ye and S. Zhang, A weak Galerkin least-squares finite element method for div-curl systems, J. Comput. Phys., 363 (2018), 79-86.  doi: 10.1016/j.jcp.2018.02.036.  Google Scholar

[9]

G. LinJ. LiuL. Mu and X. Ye, Weak Galerkin finite element methods for Darcy flow: Anisotropy and heterogeneity, J. Comput. Phys., 276 (2014), 422-437.  doi: 10.1016/j.jcp.2014.07.001.  Google Scholar

[10]

R. LinX. YeS. Zhang and P. Zhu, A weak Galerkin finite element method for singularly perturbed convection-diffusion-reaction problems, SIAM J. Numer. Anal., 56 (2018), 1482-1497.  doi: 10.1137/17M1152528.  Google Scholar

[11]

X. MengC.-W. Shu and B. Wu, Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations, Math. Comp., 85 (2016), 1225-1261.  doi: 10.1090/mcom/3022.  Google Scholar

[12]

L. MuJ. Wang and X. Ye, A new weak Galerkin finite element method for the Helmholtz equation, IMA J. Numer. Anal., 35 (2015), 1228-1255.  doi: 10.1093/imanum/dru026.  Google Scholar

[13]

L. MuJ. Wang and X. Ye, Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes, Numer. Methods Partial Differential Equations, 30 (2014), 1003-1029.  doi: 10.1002/num.21855.  Google Scholar

[14]

L. MuJ. Wang and X. Ye, Weak Galerkin finite element methods on polytopal meshes, Int. J. Numer. Anal. Model., 12 (2015), 31-53.   Google Scholar

[15]

L. MuJ. WangX. Ye and S. Zhang, A weak Galerkin finite element method for the Maxwell equations, J. Sci. Comput., 65 (2015), 363-386.  doi: 10.1007/s10915-014-9964-4.  Google Scholar

[16]

L. MuJ. WangX. Ye and S. Zhao, A new weak Galerkin finite element method for elliptic interface problems, J. Comput. Phys., 325 (2016), 157-173.  doi: 10.1016/j.jcp.2016.08.024.  Google Scholar

[17]

S. ShieldsJ. Li and E. A. Machorro, Weak Galerkin methods for time-dependent Maxwell's equations, Comput. Math. Appl., 74 (2017), 2106-2124.  doi: 10.1016/j.camwa.2017.07.047.  Google Scholar

[18]

J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.  doi: 10.1016/j.cam.2012.10.003.  Google Scholar

[19]

J. Wang and X. Ye, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comp., 83 (2014), 2101-2126.  doi: 10.1090/S0025-5718-2014-02852-4.  Google Scholar

[20]

J. Wang and X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42 (2016), 155-174.  doi: 10.1007/s10444-015-9415-2.  Google Scholar

[21]

Q. ZhaiR. ZhangN. Malluwawadu and S. Hussain, The weak Galerkin method for linear hyperbolic equation, Commun. Comput. Phys., 24 (2018), 152-166.  doi: 10.4208/cicp.oa-2017-0052.  Google Scholar

[22]

Q. Zhang and C.-W. Shu, Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin methods for scalar conservation laws, SIAM J. Numer. Anal., 42 (2004), 641-666.  doi: 10.1137/S0036142902404182.  Google Scholar

[23]

Q. Zhang and C.-W. Shu, Stability analysis and a priori error estimates of the third order explicit Runge-Kutta discontinuous Galerkin method for scalar conservation laws, SIAM J. Numer. Anal., 48 (2010), 1038-1063.  doi: 10.1137/090771363.  Google Scholar

show all references

References:
[1]

B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. Ⅱ. General framework, Math. Comp., 52 (1989), 411-435.  doi: 10.2307/2008474.  Google Scholar

[2]

B. Cockburn and C.-W. Shu, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput., 16 (2001), 173-261.  doi: 10.1023/A:1012873910884.  Google Scholar

[3]

S. GottliebC.-W. Shu and E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Rev., 43 (2001), 89-112.  doi: 10.1137/S003614450036757X.  Google Scholar

[4]

A. HartenB. EngquistS. Osher and S. R. Chakravarthy, Uniformly high-order accurate essentially non-oscillatory schemes. Ⅲ, J. Comput. Phys., 71 (1987), 231-303.  doi: 10.1016/0021-9991(87)90031-3.  Google Scholar

[5]

G. S. Jiang and C.-W. Shu, On cell entropy inequality for discontinuous Galerkin methods, Math. Comp., 62 (1994), 531-538.  doi: 10.1090/S0025-5718-1994-1223232-7.  Google Scholar

[6]

M.-Y. Kim, A discontinuous Galerkin method with Lagrange multiplier for hyperbolic conservation laws with boundary conditions, Comput. Math. Appl., 70 (2015), 488-506.  doi: 10.1016/j.camwa.2015.05.003.  Google Scholar

[7]

M.-Y. Kim, High order DG-DGLM method for hyperbolic conservation laws, Comput. Math. Appl., 75 (2018), 4458-4489.  doi: 10.1016/j.camwa.2018.03.043.  Google Scholar

[8]

J. LiX. Ye and S. Zhang, A weak Galerkin least-squares finite element method for div-curl systems, J. Comput. Phys., 363 (2018), 79-86.  doi: 10.1016/j.jcp.2018.02.036.  Google Scholar

[9]

G. LinJ. LiuL. Mu and X. Ye, Weak Galerkin finite element methods for Darcy flow: Anisotropy and heterogeneity, J. Comput. Phys., 276 (2014), 422-437.  doi: 10.1016/j.jcp.2014.07.001.  Google Scholar

[10]

R. LinX. YeS. Zhang and P. Zhu, A weak Galerkin finite element method for singularly perturbed convection-diffusion-reaction problems, SIAM J. Numer. Anal., 56 (2018), 1482-1497.  doi: 10.1137/17M1152528.  Google Scholar

[11]

X. MengC.-W. Shu and B. Wu, Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations, Math. Comp., 85 (2016), 1225-1261.  doi: 10.1090/mcom/3022.  Google Scholar

[12]

L. MuJ. Wang and X. Ye, A new weak Galerkin finite element method for the Helmholtz equation, IMA J. Numer. Anal., 35 (2015), 1228-1255.  doi: 10.1093/imanum/dru026.  Google Scholar

[13]

L. MuJ. Wang and X. Ye, Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes, Numer. Methods Partial Differential Equations, 30 (2014), 1003-1029.  doi: 10.1002/num.21855.  Google Scholar

[14]

L. MuJ. Wang and X. Ye, Weak Galerkin finite element methods on polytopal meshes, Int. J. Numer. Anal. Model., 12 (2015), 31-53.   Google Scholar

[15]

L. MuJ. WangX. Ye and S. Zhang, A weak Galerkin finite element method for the Maxwell equations, J. Sci. Comput., 65 (2015), 363-386.  doi: 10.1007/s10915-014-9964-4.  Google Scholar

[16]

L. MuJ. WangX. Ye and S. Zhao, A new weak Galerkin finite element method for elliptic interface problems, J. Comput. Phys., 325 (2016), 157-173.  doi: 10.1016/j.jcp.2016.08.024.  Google Scholar

[17]

S. ShieldsJ. Li and E. A. Machorro, Weak Galerkin methods for time-dependent Maxwell's equations, Comput. Math. Appl., 74 (2017), 2106-2124.  doi: 10.1016/j.camwa.2017.07.047.  Google Scholar

[18]

J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.  doi: 10.1016/j.cam.2012.10.003.  Google Scholar

[19]

J. Wang and X. Ye, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comp., 83 (2014), 2101-2126.  doi: 10.1090/S0025-5718-2014-02852-4.  Google Scholar

[20]

J. Wang and X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42 (2016), 155-174.  doi: 10.1007/s10444-015-9415-2.  Google Scholar

[21]

Q. ZhaiR. ZhangN. Malluwawadu and S. Hussain, The weak Galerkin method for linear hyperbolic equation, Commun. Comput. Phys., 24 (2018), 152-166.  doi: 10.4208/cicp.oa-2017-0052.  Google Scholar

[22]

Q. Zhang and C.-W. Shu, Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin methods for scalar conservation laws, SIAM J. Numer. Anal., 42 (2004), 641-666.  doi: 10.1137/S0036142902404182.  Google Scholar

[23]

Q. Zhang and C.-W. Shu, Stability analysis and a priori error estimates of the third order explicit Runge-Kutta discontinuous Galerkin method for scalar conservation laws, SIAM J. Numer. Anal., 48 (2010), 1038-1063.  doi: 10.1137/090771363.  Google Scholar

Figure 1.  WG solution for Example 2, $ T = 1/\pi, \lambda_1 = 2,\lambda_2 = 1,N = 128 $
Figure 2.  The $ P_1 $ WG solution and DG solution for Example 3, $ T = 2\pi, N = 512 $
Table 1.  $ L^2 $ errors and corresponding convergence rates of Example 1. $ T = 2\pi $, $ \lambda_1 = \lambda_2 = 1 $
$ P_1 $ element $ P_2 $ element $ P_3 $ element
N $ \|u-u_0\| $ Rate $ \|u-u_0\| $ Rate $ \|u-u_0\| $ Rate
8 1.29E-01 3.36E-03 2.66E-04
16 3.02E-02 2.10 3.99E-04 3.08 1.94E-05 3.78
32 7.22E-03 2.06 4.93E-05 3.02 1.27E-06 3.93
64 1.78E-03 2.02 6.14E-06 3.00 8.06E-08 3.98
128 4.42E-04 2.01 7.67E-07 3.00 5.06E-09 4.00
$ P_1 $ element $ P_2 $ element $ P_3 $ element
N $ \|u-u_0\| $ Rate $ \|u-u_0\| $ Rate $ \|u-u_0\| $ Rate
8 1.29E-01 3.36E-03 2.66E-04
16 3.02E-02 2.10 3.99E-04 3.08 1.94E-05 3.78
32 7.22E-03 2.06 4.93E-05 3.02 1.27E-06 3.93
64 1.78E-03 2.02 6.14E-06 3.00 8.06E-08 3.98
128 4.42E-04 2.01 7.67E-07 3.00 5.06E-09 4.00
Table 2.  $ L^2 $ errors and corresponding convergence rates of Example 2. $ T = 0.2 $, $ \lambda_1 = \lambda_2 = 2.5 $
$ P_1 $ element $ P_2 $ element $ P_3 $ element
N $ \|u-u_0\| $ Rate $ \|u-u_0\| $ Rate $ \|u-u_0\| $ Rate
8 1.68E-02 6.60E-03 1.89E-03
16 6.11E-03 1.46 7.86E-04 3.07 2.22E-04 3.09
32 1.42E-03 2.10 1.63E-04 2.27 9.96E-06 4.48
64 3.49E-04 2.03 2.85E-05 2.51 8.19E-07 3.60
128 8.67E-05 2.01 4.98E-06 2.51 5.81E-08 3.82
$ P_1 $ element $ P_2 $ element $ P_3 $ element
N $ \|u-u_0\| $ Rate $ \|u-u_0\| $ Rate $ \|u-u_0\| $ Rate
8 1.68E-02 6.60E-03 1.89E-03
16 6.11E-03 1.46 7.86E-04 3.07 2.22E-04 3.09
32 1.42E-03 2.10 1.63E-04 2.27 9.96E-06 4.48
64 3.49E-04 2.03 2.85E-05 2.51 8.19E-07 3.60
128 8.67E-05 2.01 4.98E-06 2.51 5.81E-08 3.82
Table 3.  $ L^2 $ errors and corresponding convergence rates of Example 3. $ T = 2\pi $, $ \lambda_1 = 2,\lambda_2 = 1 $
$ P_1 $ element $ P_2 $ element
N $ \|u-u_0\| $ Rate $ \|u-u_0\| $ Rate
8 5.93E-01 4.23E-01
16 5.01E-01 0.24 3.25E-01 0.38
32 3.93E-01 0.35 2.52E-01 0.37
64 3.26E-01 0.27 1.98E-01 0.35
128 2.72E-01 0.26 1.58E-01 0.33
256 2.26E-01 0.27 1.27E-01 0.32
512 1.89E-01 0.26 1.03E-01 0.30
$ P_1 $ element $ P_2 $ element
N $ \|u-u_0\| $ Rate $ \|u-u_0\| $ Rate
8 5.93E-01 4.23E-01
16 5.01E-01 0.24 3.25E-01 0.38
32 3.93E-01 0.35 2.52E-01 0.37
64 3.26E-01 0.27 1.98E-01 0.35
128 2.72E-01 0.26 1.58E-01 0.33
256 2.26E-01 0.27 1.27E-01 0.32
512 1.89E-01 0.26 1.03E-01 0.30
[1]

Xiaomeng Li, Qiang Xu, Ailing Zhu. Weak Galerkin mixed finite element methods for parabolic equations with memory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 513-531. doi: 10.3934/dcdss.2019034

[2]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020096

[3]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020196

[4]

Guanrong Li, Yanping Chen, Yunqing Huang. A hybridized weak Galerkin finite element scheme for general second-order elliptic problems. Electronic Research Archive, 2020, 28 (2) : 821-836. doi: 10.3934/era.2020042

[5]

Ruishu Wang, Lin Mu, Xiu Ye. A locking free Reissner-Mindlin element with weak Galerkin rotations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 351-361. doi: 10.3934/dcdsb.2018086

[6]

Wolf-Jüergen Beyn, Janosch Rieger. Galerkin finite element methods for semilinear elliptic differential inclusions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 295-312. doi: 10.3934/dcdsb.2013.18.295

[7]

K. T. Joseph, Philippe G. LeFloch. Boundary layers in weak solutions of hyperbolic conservation laws II. self-similar vanishing diffusion limits. Communications on Pure & Applied Analysis, 2002, 1 (1) : 51-76. doi: 10.3934/cpaa.2002.1.51

[8]

Xiu Ye, Shangyou Zhang. A new weak gradient for the stabilizer free weak Galerkin method with polynomial reduction. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020277

[9]

Zengjing Chen, Qingyang Liu, Gaofeng Zong. Weak laws of large numbers for sublinear expectation. Mathematical Control & Related Fields, 2018, 8 (3&4) : 637-651. doi: 10.3934/mcrf.2018027

[10]

Alexander Mielke. Weak-convergence methods for Hamiltonian multiscale problems. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 53-79. doi: 10.3934/dcds.2008.20.53

[11]

Xiuting Li. The energy conservation for weak solutions to the relativistic Nordström-Vlasov system. Evolution Equations & Control Theory, 2016, 5 (1) : 135-145. doi: 10.3934/eect.2016.5.135

[12]

Lijuan Wang, Jun Zou. Error estimates of finite element methods for parameter identifications in elliptic and parabolic systems. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1641-1670. doi: 10.3934/dcdsb.2010.14.1641

[13]

Chunjuan Hou, Yanping Chen, Zuliang Lu. Superconvergence property of finite element methods for parabolic optimal control problems. Journal of Industrial & Management Optimization, 2011, 7 (4) : 927-945. doi: 10.3934/jimo.2011.7.927

[14]

Qun Lin, Hehu Xie. Recent results on lower bounds of eigenvalue problems by nonconforming finite element methods. Inverse Problems & Imaging, 2013, 7 (3) : 795-811. doi: 10.3934/ipi.2013.7.795

[15]

Zhangxin Chen. On the control volume finite element methods and their applications to multiphase flow. Networks & Heterogeneous Media, 2006, 1 (4) : 689-706. doi: 10.3934/nhm.2006.1.689

[16]

Runchang Lin, Huiqing Zhu. A discontinuous Galerkin least-squares finite element method for solving Fisher's equation. Conference Publications, 2013, 2013 (special) : 489-497. doi: 10.3934/proc.2013.2013.489

[17]

Avner Friedman. Conservation laws in mathematical biology. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3081-3097. doi: 10.3934/dcds.2012.32.3081

[18]

Mauro Garavello. A review of conservation laws on networks. Networks & Heterogeneous Media, 2010, 5 (3) : 565-581. doi: 10.3934/nhm.2010.5.565

[19]

Len G. Margolin, Roy S. Baty. Conservation laws in discrete geometry. Journal of Geometric Mechanics, 2019, 11 (2) : 187-203. doi: 10.3934/jgm.2019010

[20]

Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina. Conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2007, 2 (1) : 159-179. doi: 10.3934/nhm.2007.2.159

2018 Impact Factor: 0.263

Metrics

  • PDF downloads (5)
  • HTML views (20)
  • Cited by (0)

Other articles
by authors

[Back to Top]