• Previous Article
    Some recent progress on inverse scattering problems within general polyhedral geometry
  • ERA Home
  • This Issue
  • Next Article
    Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method
doi: 10.3934/era.2020098

Some multivariate polynomials for doubled permutations

Department of Mathematics, Bar-Ilan University, Ramat-Gan 52900, Israel

Received  May 2020 Revised  August 2020 Published  September 2020

Fund Project: Supported by the Israel Science Foundation, grant no. 1970/18

Flajolet and Françon [European. J. Combin. 10 (1989) 235-241] gave a combinatorial interpretation for the Taylor coefficients of the Jacobian elliptic functions in terms of doubled permutations. We show that a multivariable counting of the doubled permutations has also an explicit continued fraction expansion generalizing the continued fraction expansions of Rogers and Stieltjes. The second goal of this paper is to study the expansion of the Taylor coefficients of the generalized Jacobian elliptic functions, which implies the symmetric and unimodal property of the Taylor coefficients of the generalized Jacobian elliptic functions. The main tools are the combinatorial theory of continued fractions due to Flajolet and bijections due to Françon-Viennot, Foata-Zeilberger and Clarke-Steingrímsson-Zeng.

Citation: Bin Han. Some multivariate polynomials for doubled permutations. Electronic Research Archive, doi: 10.3934/era.2020098
References:
[1]

C. A. Athanasiadis, Gamma-positivity in combinatorics and geometry, Sém. Lothar. Combin., 77 (2016-2018), 64pp.  Google Scholar

[2]

F. Bowman, Introduction to Elliptic Functions with Applications, English Universities Press, Ltd., London, 1953.  Google Scholar

[3]

P. Brändén, Actions on permutations and unimodality of descent polynomials, European J. Combin., 29 (2008), 514-531.  doi: 10.1016/j.ejc.2006.12.010.  Google Scholar

[4]

R. J. ClarkeE. Steingrímsson and J. Zeng, New Euler-Mahonian statistics on permutations and words, Adv. in Appl. Math., 18 (1997), 237-270.  doi: 10.1006/aama.1996.0506.  Google Scholar

[5]

E. V. F. Conrad, Some Continued Fraction Expansions of Laplace Transforms of Elliptic Functions., Ph.D thesis, Ohio State University, 2002.  Google Scholar

[6]

E. V. F. Conrad and P. Flajolet, The Fermat cubic, elliptic functions, continued fractions and a combinatorial excursion, Sém. Lothar. Combin., 54 (2005/07), 44pp.  Google Scholar

[7]

S. Corteel, Crossings and alignments of permutations, Adv. in Appl. Math., 38 (2007) 149–163. doi: 10.1016/j.aam.2006.01.006.  Google Scholar

[8]

D. Dumont, A combinatorial interpretation for the Schett recurrence on the Jacobian elliptic functions, Math. Comp., 33 (1979), 1293-1297.  doi: 10.1090/S0025-5718-1979-0537974-1.  Google Scholar

[9]

D. Dumont, Une approche combinatoire des fonctions elliptiques de Jacobi, Adv. in Math., 41 (1981), 1-39.  doi: 10.1016/S0001-8708(81)80002-3.  Google Scholar

[10]

D. Dumont, Pics de cycle et dérivées partielles, Sém. Lothar. Combin., 13 (1986), 19pp. Google Scholar

[11]

P. Flajolet, Combinatorial aspects of continued fractions, Discrete Math., 32 (1980), 125-161.  doi: 10.1016/0012-365X(80)90050-3.  Google Scholar

[12]

P. Flajolet and J. Françon, Elliptic functions, continued fractions and doubled permutations, European J. Combin., 10 (1989), 235-241.  doi: 10.1016/S0195-6698(89)80057-5.  Google Scholar

[13]

D. Foata and M.-P. Schützenberger, Théorie Géométrique des Polynômes Eulériens, Lecture Notes in Mathematics, 138, Springer-Verlag, Berlin-New York, 1970. doi: 10.1007/BFb0060799.  Google Scholar

[14]

D. Foata and V. Strehl, Rearrangements of the symmetric group and enumerative properties of the tangent and secant numbers, Math Z., 137 (1974), 257-264.  doi: 10.1007/BF01237393.  Google Scholar

[15]

D. Foata and D. Zeilberger, Denert's permutation statistic is indeed Euler-Mahonian, Stud. Appl. Math., 83 (1990), 31-59.  doi: 10.1002/sapm199083131.  Google Scholar

[16]

B. Han, J. Mao and J. Zeng, Eulerian polynomials and excedance statistics, Adv. in Appl. Math., 121 (2020). doi: 10.1016/j.aam.2020.102092.  Google Scholar

[17]

B. Han, J. Mao and J. Zeng, Eulerian polynomials and excedance statistics via continued fractions, Sém. Lothar. Combin., 84B (2020), 12pp. Google Scholar

[18]

Z. Lin and J. Zeng, The $\gamma$-positivity of basic Eulerian polynomials via group actions, J. Combin. Theory Ser. A., 135 (2015), 112-129.  doi: 10.1016/j.jcta.2015.04.006.  Google Scholar

[19]

S.-M. MaT. MansourD. G. L. Wang and Y.-N. Yeh, Several variants of the Dumont differential system and permutation statistics, Sci. China Math., 62 (2019), 2033-2052.  doi: 10.1007/s11425-016-9240-5.  Google Scholar

[20]

S.-M. Ma, J. Ma, Y.-N. Yeh and R. R. Zhou, On the unimodality of the Taylor expansion coefficients of Jacobian Elliptic function, preprint, arXiv: 1807.08700v3. Google Scholar

[21]

L. J. Rogers, on the representation of certain asymptotic series as convergent continued fractions, Proc. London Math. Soc. (2), 4 (1907), 72-89.  doi: 10.1112/plms/s2-4.1.72.  Google Scholar

[22]

H. Shin and J. Zeng, The $q$-tangent and $q$-secant numbers via continued fractions, European J. Combin., 31 (2010), 1689-1705.  doi: 10.1016/j.ejc.2010.04.003.  Google Scholar

[23]

H. Shin and J. Zeng, The symmetric and unimodal expansion of Eulerian polynomials via continued fractions, European J. Combin., 33 (2012), 111-127.  doi: 10.1016/j.ejc.2011.08.005.  Google Scholar

[24]

H. Shin and J. Zeng, Symmetric unimodal expansions of excedances in colored permutations, European J. Combin., 52 (2016), 174-196.  doi: 10.1016/j.ejc.2015.10.004.  Google Scholar

[25]

A. D. Sokal and J. Zeng, Some multivariate master polynomials for permutations, set partitions, and perfect matchings, and their continued fractions, preprint, arXiv: 2003.08192. Google Scholar

[26]

R. P. Stanley, A survey of alternating permutations, in Combinatorics and Graphs, Contemp. Math., 531, Amer. Math. Soc., Providence, RI, 2010,165–196. doi: 10.1090/conm/531/10466.  Google Scholar

[27]

T.-J. Stieltjes, Sur the réduction en fraction continue d'une série procédant suivant les puissances descendantes d'une variable, Ann. Fac. Sci. Tulouse Sci. Math. Sci. Phys., 3 (1889), H1–H17. doi: 10.5802/afst.34.  Google Scholar

[28]

G. Viennot, Une interprétation combinatoire des coefficients de déveloooements en série entière des fonctions elliptiques de Jacobi, J. Combin. Theory Ser. A, 29 (1980), 121-133.  doi: 10.1016/0097-3165(80)90001-1.  Google Scholar

[29]

S. H. F. Yan, H. Zhou and Z. Lin, A new encoding of permutations by Laguerre histories, Electron. J. Combin., 26 (2019), 9pp. doi: 10.37236/8661.  Google Scholar

show all references

References:
[1]

C. A. Athanasiadis, Gamma-positivity in combinatorics and geometry, Sém. Lothar. Combin., 77 (2016-2018), 64pp.  Google Scholar

[2]

F. Bowman, Introduction to Elliptic Functions with Applications, English Universities Press, Ltd., London, 1953.  Google Scholar

[3]

P. Brändén, Actions on permutations and unimodality of descent polynomials, European J. Combin., 29 (2008), 514-531.  doi: 10.1016/j.ejc.2006.12.010.  Google Scholar

[4]

R. J. ClarkeE. Steingrímsson and J. Zeng, New Euler-Mahonian statistics on permutations and words, Adv. in Appl. Math., 18 (1997), 237-270.  doi: 10.1006/aama.1996.0506.  Google Scholar

[5]

E. V. F. Conrad, Some Continued Fraction Expansions of Laplace Transforms of Elliptic Functions., Ph.D thesis, Ohio State University, 2002.  Google Scholar

[6]

E. V. F. Conrad and P. Flajolet, The Fermat cubic, elliptic functions, continued fractions and a combinatorial excursion, Sém. Lothar. Combin., 54 (2005/07), 44pp.  Google Scholar

[7]

S. Corteel, Crossings and alignments of permutations, Adv. in Appl. Math., 38 (2007) 149–163. doi: 10.1016/j.aam.2006.01.006.  Google Scholar

[8]

D. Dumont, A combinatorial interpretation for the Schett recurrence on the Jacobian elliptic functions, Math. Comp., 33 (1979), 1293-1297.  doi: 10.1090/S0025-5718-1979-0537974-1.  Google Scholar

[9]

D. Dumont, Une approche combinatoire des fonctions elliptiques de Jacobi, Adv. in Math., 41 (1981), 1-39.  doi: 10.1016/S0001-8708(81)80002-3.  Google Scholar

[10]

D. Dumont, Pics de cycle et dérivées partielles, Sém. Lothar. Combin., 13 (1986), 19pp. Google Scholar

[11]

P. Flajolet, Combinatorial aspects of continued fractions, Discrete Math., 32 (1980), 125-161.  doi: 10.1016/0012-365X(80)90050-3.  Google Scholar

[12]

P. Flajolet and J. Françon, Elliptic functions, continued fractions and doubled permutations, European J. Combin., 10 (1989), 235-241.  doi: 10.1016/S0195-6698(89)80057-5.  Google Scholar

[13]

D. Foata and M.-P. Schützenberger, Théorie Géométrique des Polynômes Eulériens, Lecture Notes in Mathematics, 138, Springer-Verlag, Berlin-New York, 1970. doi: 10.1007/BFb0060799.  Google Scholar

[14]

D. Foata and V. Strehl, Rearrangements of the symmetric group and enumerative properties of the tangent and secant numbers, Math Z., 137 (1974), 257-264.  doi: 10.1007/BF01237393.  Google Scholar

[15]

D. Foata and D. Zeilberger, Denert's permutation statistic is indeed Euler-Mahonian, Stud. Appl. Math., 83 (1990), 31-59.  doi: 10.1002/sapm199083131.  Google Scholar

[16]

B. Han, J. Mao and J. Zeng, Eulerian polynomials and excedance statistics, Adv. in Appl. Math., 121 (2020). doi: 10.1016/j.aam.2020.102092.  Google Scholar

[17]

B. Han, J. Mao and J. Zeng, Eulerian polynomials and excedance statistics via continued fractions, Sém. Lothar. Combin., 84B (2020), 12pp. Google Scholar

[18]

Z. Lin and J. Zeng, The $\gamma$-positivity of basic Eulerian polynomials via group actions, J. Combin. Theory Ser. A., 135 (2015), 112-129.  doi: 10.1016/j.jcta.2015.04.006.  Google Scholar

[19]

S.-M. MaT. MansourD. G. L. Wang and Y.-N. Yeh, Several variants of the Dumont differential system and permutation statistics, Sci. China Math., 62 (2019), 2033-2052.  doi: 10.1007/s11425-016-9240-5.  Google Scholar

[20]

S.-M. Ma, J. Ma, Y.-N. Yeh and R. R. Zhou, On the unimodality of the Taylor expansion coefficients of Jacobian Elliptic function, preprint, arXiv: 1807.08700v3. Google Scholar

[21]

L. J. Rogers, on the representation of certain asymptotic series as convergent continued fractions, Proc. London Math. Soc. (2), 4 (1907), 72-89.  doi: 10.1112/plms/s2-4.1.72.  Google Scholar

[22]

H. Shin and J. Zeng, The $q$-tangent and $q$-secant numbers via continued fractions, European J. Combin., 31 (2010), 1689-1705.  doi: 10.1016/j.ejc.2010.04.003.  Google Scholar

[23]

H. Shin and J. Zeng, The symmetric and unimodal expansion of Eulerian polynomials via continued fractions, European J. Combin., 33 (2012), 111-127.  doi: 10.1016/j.ejc.2011.08.005.  Google Scholar

[24]

H. Shin and J. Zeng, Symmetric unimodal expansions of excedances in colored permutations, European J. Combin., 52 (2016), 174-196.  doi: 10.1016/j.ejc.2015.10.004.  Google Scholar

[25]

A. D. Sokal and J. Zeng, Some multivariate master polynomials for permutations, set partitions, and perfect matchings, and their continued fractions, preprint, arXiv: 2003.08192. Google Scholar

[26]

R. P. Stanley, A survey of alternating permutations, in Combinatorics and Graphs, Contemp. Math., 531, Amer. Math. Soc., Providence, RI, 2010,165–196. doi: 10.1090/conm/531/10466.  Google Scholar

[27]

T.-J. Stieltjes, Sur the réduction en fraction continue d'une série procédant suivant les puissances descendantes d'une variable, Ann. Fac. Sci. Tulouse Sci. Math. Sci. Phys., 3 (1889), H1–H17. doi: 10.5802/afst.34.  Google Scholar

[28]

G. Viennot, Une interprétation combinatoire des coefficients de déveloooements en série entière des fonctions elliptiques de Jacobi, J. Combin. Theory Ser. A, 29 (1980), 121-133.  doi: 10.1016/0097-3165(80)90001-1.  Google Scholar

[29]

S. H. F. Yan, H. Zhou and Z. Lin, A new encoding of permutations by Laguerre histories, Electron. J. Combin., 26 (2019), 9pp. doi: 10.37236/8661.  Google Scholar

Figure 1.  The doubled path $ \gamma $
Figure 2.  MFS-actions on $ 569174328 $ (recall $ \pi(0) = \pi(10) = 0 $)
[1]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[2]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[3]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[4]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[5]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[6]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[7]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[8]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[9]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[10]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[11]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[12]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[13]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

 Impact Factor: 0.263

Metrics

  • PDF downloads (49)
  • HTML views (92)
  • Cited by (0)

Other articles
by authors

[Back to Top]