-
Previous Article
Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra
- ERA Home
- This Issue
-
Next Article
A geometric-analytic study of linear differential equations of order two
Regular random attractors for non-autonomous stochastic reaction-diffusion equations on thin domains
1. | School of Mathematics, Southwest Jiaotong University, Chengdu, Sichuan 610031, China |
2. | National Engineering Laboratory of, Integrated Transportation Big Data Application Technology, Chengdu, Sichuan 610031, China |
This paper deals with the limiting dynamical behavior of non-autonomous stochastic reaction-diffusion equations on thin domains. Firstly, we prove the existence and uniqueness of the regular random attractor. Then we prove the upper semicontinuity of the regular random attractors for the equations on a family of $ (n+1) $-dimensional thin domains collapses onto an $ n $-dimensional domain.
References:
[1] |
L. Arnold, Random Dynamical Systems, Springer-Verlag, 1998.
doi: 10.1007/978-3-662-12878-7. |
[2] |
P. W. Bates, K. Lu and B. Wang,
Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869.
doi: 10.1016/j.jde.2008.05.017. |
[3] |
P. W. Bates, K. Lu and B. Wang, Tempered random attractors for parabolic equations in weighted spaces, J. Math. Phy., 54 (2013), 081505, 26 pp.
doi: 10.1063/1.4817597. |
[4] |
T. Caraballo, I. D. Chueshov and P. E. Kloeden,
Synchronization of a stochastic reaction-diffusion system on a thin two-layer domain, SIAM J. Math. Anal., 38 (2006/07), 1489-1507.
doi: 10.1137/050647281. |
[5] |
H. Crauel, A. Debussche and F. Flandoli,
Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.
doi: 10.1007/BF02219225. |
[6] |
J. Duan, K. Lu and B. Schmalfuss,
Invariant manifolds for stochastic partial differential equations, Ann. Probab., 31 (2003), 2109-2135.
doi: 10.1214/aop/1068646380. |
[7] |
A. Gu, D. Li, B. Wang and H. Yang,
Regularity of random attractors for fractional stochastic reaction-diffusion equations on $\mathbb{R}^n$, J. Differential Equations, 264 (2018), 7094-7137.
doi: 10.1016/j.jde.2018.02.011. |
[8] |
J. K. Hale and G. Raugel,
A reaction-diffusion equation on a thin L-shaped domain, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 283-327.
doi: 10.1017/S0308210500028043. |
[9] |
X. Han, P. E. Kloeden and B. Usman,
Long term behavior of a random Hopfield neural lattice model, Commun. Pure Appl. Anal., 18 (2019), 809-824.
doi: 10.3934/cpaa.2019039. |
[10] |
X. Han, W. Shen and S. Zhou,
Random attractors for stochastic lattice dynamical systems in weighted spaces, J. Differential Equations, 250 (2011), 1235-1266.
doi: 10.1016/j.jde.2010.10.018. |
[11] |
F. Li, Y. Li and R. Wang,
Strong convergence of bi-spatial random attractors for parabolic equations on thin domains with rough noise, Topol. Methods Nonlinear Anal., 53 (2019), 659-682.
doi: 10.12775/tmna.2019.015. |
[12] |
F. Li, Y. Li and R. Wang,
Regular measurable dynamics for reaction-diffusion equations on narrow domains with rough noise, Discrete Contin. Dyn. Syst., 38 (2018), 3663-3685.
doi: 10.3934/dcds.2018158. |
[13] |
D. Li, K. Lu, B. Wang and X. Wang,
Limiting behavior of dynamics for stochastic reaction-diffusion equations with additive noise on thin domains, Discrete Contin. Dyn. Syst., 38 (2018), 187-208.
doi: 10.3934/dcds.2018009. |
[14] |
D. Li, K. Lu, B. Wang and X. Wang,
Limiting dynamics for non-autonomous stochastic retarded reaction-diffusion equations on thin domains, Discrete Contin. Dyn. Syst., 39 (2019), 3717-3747.
doi: 10.3934/dcds.2019151. |
[15] |
D. Li and L. Shi, Upper semicontinuity of attractors of stochastic delay reaction-diffusion equations in the delay, J. Math. Phys., 59 (2018), 032703, 35 pp.
doi: 10.1063/1.4994869. |
[16] |
D. Li and X. Wang,
Asymptotic behavior of stochastic complex Ginzburg-Landau equations with deterministic non-autonomous forcing on thin domains, Discrete Contin. Dyn. Syst. B, 24 (2019), 449-465.
doi: 10.3934/dcdsb.2018181. |
[17] |
D. Li, B. Wang and X. Wang,
Limiting behavior of non-autonomous stochastic reaction-diffusion equations on thin domains, J. Differential Equations, 262 (2017), 1575-1602.
doi: 10.1016/j.jde.2016.10.024. |
[18] |
W. Liu and B. Wang,
Poisson-Nernst-Planck systems for narrow tubular-like membrane channels, J. Dynam. Differential Equations, 22 (2010), 413-437.
doi: 10.1007/s10884-010-9186-x. |
[19] |
Z. Shen, S. Zhou and W. Shen,
One-dimensional random attractor and rotation number of the stochastic damped sine-Gordon equation, J. Differential Equations, 248 (2010), 1432-1457.
doi: 10.1016/j.jde.2009.10.007. |
[20] |
L. Shi, R. Wang, K. Lu and B. Wang,
Asymptotic behavior of stochastic FitzHugh-Nagumo systems on unbounded thin domains, J. Differential Equations, 267 (2019), 4373-4409.
doi: 10.1016/j.jde.2019.05.002. |
[21] |
B. Wang,
Suffcient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.
doi: 10.1016/j.jde.2012.05.015. |
[22] |
B. Wang,
Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst., 34 (2014), 269-300.
doi: 10.3934/dcds.2014.34.269. |
[23] |
Y. Wang and J. Wang,
Pullback attractors for multi-valued non-compact random dynamical systems generated by reaction-diffusion equations on an unbounded domain, J. Differential Equations, 259 (2015), 728-776.
doi: 10.1016/j.jde.2015.02.026. |
show all references
References:
[1] |
L. Arnold, Random Dynamical Systems, Springer-Verlag, 1998.
doi: 10.1007/978-3-662-12878-7. |
[2] |
P. W. Bates, K. Lu and B. Wang,
Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869.
doi: 10.1016/j.jde.2008.05.017. |
[3] |
P. W. Bates, K. Lu and B. Wang, Tempered random attractors for parabolic equations in weighted spaces, J. Math. Phy., 54 (2013), 081505, 26 pp.
doi: 10.1063/1.4817597. |
[4] |
T. Caraballo, I. D. Chueshov and P. E. Kloeden,
Synchronization of a stochastic reaction-diffusion system on a thin two-layer domain, SIAM J. Math. Anal., 38 (2006/07), 1489-1507.
doi: 10.1137/050647281. |
[5] |
H. Crauel, A. Debussche and F. Flandoli,
Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.
doi: 10.1007/BF02219225. |
[6] |
J. Duan, K. Lu and B. Schmalfuss,
Invariant manifolds for stochastic partial differential equations, Ann. Probab., 31 (2003), 2109-2135.
doi: 10.1214/aop/1068646380. |
[7] |
A. Gu, D. Li, B. Wang and H. Yang,
Regularity of random attractors for fractional stochastic reaction-diffusion equations on $\mathbb{R}^n$, J. Differential Equations, 264 (2018), 7094-7137.
doi: 10.1016/j.jde.2018.02.011. |
[8] |
J. K. Hale and G. Raugel,
A reaction-diffusion equation on a thin L-shaped domain, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 283-327.
doi: 10.1017/S0308210500028043. |
[9] |
X. Han, P. E. Kloeden and B. Usman,
Long term behavior of a random Hopfield neural lattice model, Commun. Pure Appl. Anal., 18 (2019), 809-824.
doi: 10.3934/cpaa.2019039. |
[10] |
X. Han, W. Shen and S. Zhou,
Random attractors for stochastic lattice dynamical systems in weighted spaces, J. Differential Equations, 250 (2011), 1235-1266.
doi: 10.1016/j.jde.2010.10.018. |
[11] |
F. Li, Y. Li and R. Wang,
Strong convergence of bi-spatial random attractors for parabolic equations on thin domains with rough noise, Topol. Methods Nonlinear Anal., 53 (2019), 659-682.
doi: 10.12775/tmna.2019.015. |
[12] |
F. Li, Y. Li and R. Wang,
Regular measurable dynamics for reaction-diffusion equations on narrow domains with rough noise, Discrete Contin. Dyn. Syst., 38 (2018), 3663-3685.
doi: 10.3934/dcds.2018158. |
[13] |
D. Li, K. Lu, B. Wang and X. Wang,
Limiting behavior of dynamics for stochastic reaction-diffusion equations with additive noise on thin domains, Discrete Contin. Dyn. Syst., 38 (2018), 187-208.
doi: 10.3934/dcds.2018009. |
[14] |
D. Li, K. Lu, B. Wang and X. Wang,
Limiting dynamics for non-autonomous stochastic retarded reaction-diffusion equations on thin domains, Discrete Contin. Dyn. Syst., 39 (2019), 3717-3747.
doi: 10.3934/dcds.2019151. |
[15] |
D. Li and L. Shi, Upper semicontinuity of attractors of stochastic delay reaction-diffusion equations in the delay, J. Math. Phys., 59 (2018), 032703, 35 pp.
doi: 10.1063/1.4994869. |
[16] |
D. Li and X. Wang,
Asymptotic behavior of stochastic complex Ginzburg-Landau equations with deterministic non-autonomous forcing on thin domains, Discrete Contin. Dyn. Syst. B, 24 (2019), 449-465.
doi: 10.3934/dcdsb.2018181. |
[17] |
D. Li, B. Wang and X. Wang,
Limiting behavior of non-autonomous stochastic reaction-diffusion equations on thin domains, J. Differential Equations, 262 (2017), 1575-1602.
doi: 10.1016/j.jde.2016.10.024. |
[18] |
W. Liu and B. Wang,
Poisson-Nernst-Planck systems for narrow tubular-like membrane channels, J. Dynam. Differential Equations, 22 (2010), 413-437.
doi: 10.1007/s10884-010-9186-x. |
[19] |
Z. Shen, S. Zhou and W. Shen,
One-dimensional random attractor and rotation number of the stochastic damped sine-Gordon equation, J. Differential Equations, 248 (2010), 1432-1457.
doi: 10.1016/j.jde.2009.10.007. |
[20] |
L. Shi, R. Wang, K. Lu and B. Wang,
Asymptotic behavior of stochastic FitzHugh-Nagumo systems on unbounded thin domains, J. Differential Equations, 267 (2019), 4373-4409.
doi: 10.1016/j.jde.2019.05.002. |
[21] |
B. Wang,
Suffcient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.
doi: 10.1016/j.jde.2012.05.015. |
[22] |
B. Wang,
Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst., 34 (2014), 269-300.
doi: 10.3934/dcds.2014.34.269. |
[23] |
Y. Wang and J. Wang,
Pullback attractors for multi-valued non-compact random dynamical systems generated by reaction-diffusion equations on an unbounded domain, J. Differential Equations, 259 (2015), 728-776.
doi: 10.1016/j.jde.2015.02.026. |
[1] |
Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263 |
[2] |
Gökhan Mutlu. On the quotient quantum graph with respect to the regular representation. Communications on Pure & Applied Analysis, 2021, 20 (2) : 885-902. doi: 10.3934/cpaa.2020295 |
[3] |
Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020345 |
[4] |
Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021015 |
[5] |
Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319 |
[6] |
Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521 |
[7] |
Ningyu Sha, Lei Shi, Ming Yan. Fast algorithms for robust principal component analysis with an upper bound on the rank. Inverse Problems & Imaging, 2021, 15 (1) : 109-128. doi: 10.3934/ipi.2020067 |
[8] |
Joan Carles Tatjer, Arturo Vieiro. Dynamics of the QR-flow for upper Hessenberg real matrices. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1359-1403. doi: 10.3934/dcdsb.2020166 |
[9] |
Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180 |
[10] |
Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021012 |
[11] |
Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242 |
[12] |
Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345 |
[13] |
Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270 |
[14] |
Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147 |
[15] |
Xiaofeng Ren, David Shoup. The impact of the domain boundary on an inhibitory system: Interior discs and boundary half discs. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3957-3979. doi: 10.3934/dcds.2020048 |
[16] |
Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283 |
[17] |
Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, 2021, 20 (2) : 547-558. doi: 10.3934/cpaa.2020280 |
[18] |
Chunming Tang, Maozhi Xu, Yanfeng Qi, Mingshuo Zhou. A new class of $ p $-ary regular bent functions. Advances in Mathematics of Communications, 2021, 15 (1) : 55-64. doi: 10.3934/amc.2020042 |
[19] |
Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329 |
[20] |
Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021006 |
Impact Factor: 0.263
Tools
Metrics
Other articles
by authors
[Back to Top]