-
Previous Article
Computational aspects of the multiscale discontinuous Galerkin method for convection-diffusion-reaction problems
- ERA Home
- This Issue
-
Next Article
The sharp time decay rate of the isentropic Navier-Stokes system in $ {\mathop{\mathbb R\kern 0pt}\nolimits}^3 $
Regular random attractors for non-autonomous stochastic reaction-diffusion equations on thin domains
1. | School of Mathematics, Southwest Jiaotong University, Chengdu, Sichuan 610031, China |
2. | National Engineering Laboratory of, Integrated Transportation Big Data Application Technology, Chengdu, Sichuan 610031, China |
This paper deals with the limiting dynamical behavior of non-autonomous stochastic reaction-diffusion equations on thin domains. Firstly, we prove the existence and uniqueness of the regular random attractor. Then we prove the upper semicontinuity of the regular random attractors for the equations on a family of $ (n+1) $-dimensional thin domains collapses onto an $ n $-dimensional domain.
References:
[1] |
L. Arnold, Random Dynamical Systems, Springer-Verlag, 1998.
doi: 10.1007/978-3-662-12878-7. |
[2] |
P. W. Bates, K. Lu and B. Wang,
Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869.
doi: 10.1016/j.jde.2008.05.017. |
[3] |
P. W. Bates, K. Lu and B. Wang, Tempered random attractors for parabolic equations in weighted spaces, J. Math. Phy., 54 (2013), 081505, 26 pp.
doi: 10.1063/1.4817597. |
[4] |
T. Caraballo, I. D. Chueshov and P. E. Kloeden,
Synchronization of a stochastic reaction-diffusion system on a thin two-layer domain, SIAM J. Math. Anal., 38 (2006/07), 1489-1507.
doi: 10.1137/050647281. |
[5] |
H. Crauel, A. Debussche and F. Flandoli,
Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.
doi: 10.1007/BF02219225. |
[6] |
J. Duan, K. Lu and B. Schmalfuss,
Invariant manifolds for stochastic partial differential equations, Ann. Probab., 31 (2003), 2109-2135.
doi: 10.1214/aop/1068646380. |
[7] |
A. Gu, D. Li, B. Wang and H. Yang,
Regularity of random attractors for fractional stochastic reaction-diffusion equations on $\mathbb{R}^n$, J. Differential Equations, 264 (2018), 7094-7137.
doi: 10.1016/j.jde.2018.02.011. |
[8] |
J. K. Hale and G. Raugel,
A reaction-diffusion equation on a thin L-shaped domain, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 283-327.
doi: 10.1017/S0308210500028043. |
[9] |
X. Han, P. E. Kloeden and B. Usman,
Long term behavior of a random Hopfield neural lattice model, Commun. Pure Appl. Anal., 18 (2019), 809-824.
doi: 10.3934/cpaa.2019039. |
[10] |
X. Han, W. Shen and S. Zhou,
Random attractors for stochastic lattice dynamical systems in weighted spaces, J. Differential Equations, 250 (2011), 1235-1266.
doi: 10.1016/j.jde.2010.10.018. |
[11] |
F. Li, Y. Li and R. Wang,
Strong convergence of bi-spatial random attractors for parabolic equations on thin domains with rough noise, Topol. Methods Nonlinear Anal., 53 (2019), 659-682.
doi: 10.12775/tmna.2019.015. |
[12] |
F. Li, Y. Li and R. Wang,
Regular measurable dynamics for reaction-diffusion equations on narrow domains with rough noise, Discrete Contin. Dyn. Syst., 38 (2018), 3663-3685.
doi: 10.3934/dcds.2018158. |
[13] |
D. Li, K. Lu, B. Wang and X. Wang,
Limiting behavior of dynamics for stochastic reaction-diffusion equations with additive noise on thin domains, Discrete Contin. Dyn. Syst., 38 (2018), 187-208.
doi: 10.3934/dcds.2018009. |
[14] |
D. Li, K. Lu, B. Wang and X. Wang,
Limiting dynamics for non-autonomous stochastic retarded reaction-diffusion equations on thin domains, Discrete Contin. Dyn. Syst., 39 (2019), 3717-3747.
doi: 10.3934/dcds.2019151. |
[15] |
D. Li and L. Shi, Upper semicontinuity of attractors of stochastic delay reaction-diffusion equations in the delay, J. Math. Phys., 59 (2018), 032703, 35 pp.
doi: 10.1063/1.4994869. |
[16] |
D. Li and X. Wang,
Asymptotic behavior of stochastic complex Ginzburg-Landau equations with deterministic non-autonomous forcing on thin domains, Discrete Contin. Dyn. Syst. B, 24 (2019), 449-465.
doi: 10.3934/dcdsb.2018181. |
[17] |
D. Li, B. Wang and X. Wang,
Limiting behavior of non-autonomous stochastic reaction-diffusion equations on thin domains, J. Differential Equations, 262 (2017), 1575-1602.
doi: 10.1016/j.jde.2016.10.024. |
[18] |
W. Liu and B. Wang,
Poisson-Nernst-Planck systems for narrow tubular-like membrane channels, J. Dynam. Differential Equations, 22 (2010), 413-437.
doi: 10.1007/s10884-010-9186-x. |
[19] |
Z. Shen, S. Zhou and W. Shen,
One-dimensional random attractor and rotation number of the stochastic damped sine-Gordon equation, J. Differential Equations, 248 (2010), 1432-1457.
doi: 10.1016/j.jde.2009.10.007. |
[20] |
L. Shi, R. Wang, K. Lu and B. Wang,
Asymptotic behavior of stochastic FitzHugh-Nagumo systems on unbounded thin domains, J. Differential Equations, 267 (2019), 4373-4409.
doi: 10.1016/j.jde.2019.05.002. |
[21] |
B. Wang,
Suffcient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.
doi: 10.1016/j.jde.2012.05.015. |
[22] |
B. Wang,
Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst., 34 (2014), 269-300.
doi: 10.3934/dcds.2014.34.269. |
[23] |
Y. Wang and J. Wang,
Pullback attractors for multi-valued non-compact random dynamical systems generated by reaction-diffusion equations on an unbounded domain, J. Differential Equations, 259 (2015), 728-776.
doi: 10.1016/j.jde.2015.02.026. |
show all references
References:
[1] |
L. Arnold, Random Dynamical Systems, Springer-Verlag, 1998.
doi: 10.1007/978-3-662-12878-7. |
[2] |
P. W. Bates, K. Lu and B. Wang,
Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869.
doi: 10.1016/j.jde.2008.05.017. |
[3] |
P. W. Bates, K. Lu and B. Wang, Tempered random attractors for parabolic equations in weighted spaces, J. Math. Phy., 54 (2013), 081505, 26 pp.
doi: 10.1063/1.4817597. |
[4] |
T. Caraballo, I. D. Chueshov and P. E. Kloeden,
Synchronization of a stochastic reaction-diffusion system on a thin two-layer domain, SIAM J. Math. Anal., 38 (2006/07), 1489-1507.
doi: 10.1137/050647281. |
[5] |
H. Crauel, A. Debussche and F. Flandoli,
Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.
doi: 10.1007/BF02219225. |
[6] |
J. Duan, K. Lu and B. Schmalfuss,
Invariant manifolds for stochastic partial differential equations, Ann. Probab., 31 (2003), 2109-2135.
doi: 10.1214/aop/1068646380. |
[7] |
A. Gu, D. Li, B. Wang and H. Yang,
Regularity of random attractors for fractional stochastic reaction-diffusion equations on $\mathbb{R}^n$, J. Differential Equations, 264 (2018), 7094-7137.
doi: 10.1016/j.jde.2018.02.011. |
[8] |
J. K. Hale and G. Raugel,
A reaction-diffusion equation on a thin L-shaped domain, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 283-327.
doi: 10.1017/S0308210500028043. |
[9] |
X. Han, P. E. Kloeden and B. Usman,
Long term behavior of a random Hopfield neural lattice model, Commun. Pure Appl. Anal., 18 (2019), 809-824.
doi: 10.3934/cpaa.2019039. |
[10] |
X. Han, W. Shen and S. Zhou,
Random attractors for stochastic lattice dynamical systems in weighted spaces, J. Differential Equations, 250 (2011), 1235-1266.
doi: 10.1016/j.jde.2010.10.018. |
[11] |
F. Li, Y. Li and R. Wang,
Strong convergence of bi-spatial random attractors for parabolic equations on thin domains with rough noise, Topol. Methods Nonlinear Anal., 53 (2019), 659-682.
doi: 10.12775/tmna.2019.015. |
[12] |
F. Li, Y. Li and R. Wang,
Regular measurable dynamics for reaction-diffusion equations on narrow domains with rough noise, Discrete Contin. Dyn. Syst., 38 (2018), 3663-3685.
doi: 10.3934/dcds.2018158. |
[13] |
D. Li, K. Lu, B. Wang and X. Wang,
Limiting behavior of dynamics for stochastic reaction-diffusion equations with additive noise on thin domains, Discrete Contin. Dyn. Syst., 38 (2018), 187-208.
doi: 10.3934/dcds.2018009. |
[14] |
D. Li, K. Lu, B. Wang and X. Wang,
Limiting dynamics for non-autonomous stochastic retarded reaction-diffusion equations on thin domains, Discrete Contin. Dyn. Syst., 39 (2019), 3717-3747.
doi: 10.3934/dcds.2019151. |
[15] |
D. Li and L. Shi, Upper semicontinuity of attractors of stochastic delay reaction-diffusion equations in the delay, J. Math. Phys., 59 (2018), 032703, 35 pp.
doi: 10.1063/1.4994869. |
[16] |
D. Li and X. Wang,
Asymptotic behavior of stochastic complex Ginzburg-Landau equations with deterministic non-autonomous forcing on thin domains, Discrete Contin. Dyn. Syst. B, 24 (2019), 449-465.
doi: 10.3934/dcdsb.2018181. |
[17] |
D. Li, B. Wang and X. Wang,
Limiting behavior of non-autonomous stochastic reaction-diffusion equations on thin domains, J. Differential Equations, 262 (2017), 1575-1602.
doi: 10.1016/j.jde.2016.10.024. |
[18] |
W. Liu and B. Wang,
Poisson-Nernst-Planck systems for narrow tubular-like membrane channels, J. Dynam. Differential Equations, 22 (2010), 413-437.
doi: 10.1007/s10884-010-9186-x. |
[19] |
Z. Shen, S. Zhou and W. Shen,
One-dimensional random attractor and rotation number of the stochastic damped sine-Gordon equation, J. Differential Equations, 248 (2010), 1432-1457.
doi: 10.1016/j.jde.2009.10.007. |
[20] |
L. Shi, R. Wang, K. Lu and B. Wang,
Asymptotic behavior of stochastic FitzHugh-Nagumo systems on unbounded thin domains, J. Differential Equations, 267 (2019), 4373-4409.
doi: 10.1016/j.jde.2019.05.002. |
[21] |
B. Wang,
Suffcient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.
doi: 10.1016/j.jde.2012.05.015. |
[22] |
B. Wang,
Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Contin. Dyn. Syst., 34 (2014), 269-300.
doi: 10.3934/dcds.2014.34.269. |
[23] |
Y. Wang and J. Wang,
Pullback attractors for multi-valued non-compact random dynamical systems generated by reaction-diffusion equations on an unbounded domain, J. Differential Equations, 259 (2015), 728-776.
doi: 10.1016/j.jde.2015.02.026. |
[1] |
Ahmed Y. Abdallah. Upper semicontinuity of the attractor for a second order lattice dynamical system. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 899-916. doi: 10.3934/dcdsb.2005.5.899 |
[2] |
María Astudillo, Marcelo M. Cavalcanti. On the upper semicontinuity of the global attractor for a porous medium type problem with large diffusion. Evolution Equations & Control Theory, 2017, 6 (1) : 1-13. doi: 10.3934/eect.2017001 |
[3] |
Ling Xu, Jianhua Huang, Qiaozhen Ma. Upper semicontinuity of random attractors for the stochastic non-autonomous suspension bridge equation with memory. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5959-5979. doi: 10.3934/dcdsb.2019115 |
[4] |
Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of attractors for non-autonomous stochastic lattice systems with random coupled coefficients. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2221-2245. doi: 10.3934/cpaa.2016035 |
[5] |
Yejuan Wang. On the upper semicontinuity of pullback attractors for multi-valued noncompact random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3669-3708. doi: 10.3934/dcdsb.2016116 |
[6] |
Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of random attractors for non-autonomous stochastic strongly damped wave equation with multiplicative noise. Discrete & Continuous Dynamical Systems, 2017, 37 (5) : 2787-2812. doi: 10.3934/dcds.2017120 |
[7] |
Fuzhi Li, Dongmei Xu, Jiali Yu. Regular measurable backward compact random attractor for $ g $-Navier-Stokes equation. Communications on Pure & Applied Analysis, 2020, 19 (6) : 3137-3157. doi: 10.3934/cpaa.2020136 |
[8] |
Yonghai Wang. On the upper semicontinuity of pullback attractors with applications to plate equations. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1653-1673. doi: 10.3934/cpaa.2010.9.1653 |
[9] |
Shuang Yang, Yangrong Li. Forward controllability of a random attractor for the non-autonomous stochastic sine-Gordon equation on an unbounded domain. Evolution Equations & Control Theory, 2020, 9 (3) : 581-604. doi: 10.3934/eect.2020025 |
[10] |
Yonghai Wang, Chengkui Zhong. Upper semicontinuity of pullback attractors for nonautonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems, 2013, 33 (7) : 3189-3209. doi: 10.3934/dcds.2013.33.3189 |
[11] |
Zhijian Yang, Yanan Li. Upper semicontinuity of pullback attractors for non-autonomous Kirchhoff wave equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4899-4912. doi: 10.3934/dcdsb.2019036 |
[12] |
Matheus C. Bortolan, José Manuel Uzal. Upper and weak-lower semicontinuity of pullback attractors to impulsive evolution processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3667-3692. doi: 10.3934/dcdsb.2020252 |
[13] |
E. Kapsza, Gy. Károlyi, S. Kovács, G. Domokos. Regular and random patterns in complex bifurcation diagrams. Discrete & Continuous Dynamical Systems - B, 2003, 3 (4) : 519-540. doi: 10.3934/dcdsb.2003.3.519 |
[14] |
S.V. Zelik. The attractor for a nonlinear hyperbolic equation in the unbounded domain. Discrete & Continuous Dynamical Systems, 2001, 7 (3) : 593-641. doi: 10.3934/dcds.2001.7.593 |
[15] |
Linfang Liu, Xianlong Fu. Existence and upper semicontinuity of (L2, Lq) pullback attractors for a stochastic p-laplacian equation. Communications on Pure & Applied Analysis, 2017, 6 (2) : 443-474. doi: 10.3934/cpaa.2017023 |
[16] |
Shengfan Zhou, Caidi Zhao, Yejuan Wang. Finite dimensionality and upper semicontinuity of compact kernel sections of non-autonomous lattice systems. Discrete & Continuous Dynamical Systems, 2008, 21 (4) : 1259-1277. doi: 10.3934/dcds.2008.21.1259 |
[17] |
Wenlong Sun. The boundedness and upper semicontinuity of the pullback attractors for a 2D micropolar fluid flows with delay. Electronic Research Archive, 2020, 28 (3) : 1343-1356. doi: 10.3934/era.2020071 |
[18] |
Xiao-Ping Wang, Ke Wang, Weinan E. Simulations of 3-D domain wall structures in thin films. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 373-389. doi: 10.3934/dcdsb.2006.6.373 |
[19] |
Igor Kukavica, Mohammed Ziane. Regularity of the Navier-Stokes equation in a thin periodic domain with large data. Discrete & Continuous Dynamical Systems, 2006, 16 (1) : 67-86. doi: 10.3934/dcds.2006.16.67 |
[20] |
Lei Yang, Xiao-Ping Wang. Dynamics of domain wall in thin film driven by spin current. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1251-1263. doi: 10.3934/dcdsb.2010.14.1251 |
Impact Factor: 0.263
Tools
Article outline
[Back to Top]