
-
Previous Article
Tori can't collapse to an interval
- ERA Home
- This Issue
-
Next Article
Global stability of traveling waves for a spatially discrete diffusion system with time delay
Finite/fixed-time synchronization for complex networks via quantized adaptive control
Department of Applied Mathematics, Harbin University of Science and Technology, Harbin 150080, China |
In this paper, a unified theoretical method is presented to implement the finite/fixed-time synchronization control for complex networks with uncertain inner coupling. The quantized controller and the quantized adaptive controller are designed to reduce the control cost and save the channel resources, respectively. By means of the linear matrix inequalities technique, two sufficient conditions are proposed to guarantee that the synchronization error system of the complex networks is finite/fixed-time stable in virtue of the Lyapunov stability theory. Moreover, two types of setting time, which are dependent and independent on the initial values, are given respectively. Finally, the effectiveness of the control strategy is verified by a simulation example.
References:
[1] |
S. Boccaletti, V. Latora, Y. Moreno, M. Chavez and D.-U. Hwang,
Complex networks: Structure and dynamics, Phys. Rep., 424 (2006), 175-308.
doi: 10.1016/j.physrep.2005.10.009. |
[2] |
L. O. Chua, M. Itoh, L. Kocarev and K. Eckert,
Chaos synchronization in Chua's circuit, J. Circuits Systems Comput., 3 (1993), 93-108.
doi: 10.1142/S0218126693000071. |
[3] |
Y. Deng, J. Li and H. Liu,
On identifying magnetized anomalies using geomagnetic monitoring within a magnetohydrodynamic model, Arch. Ration. Mech. Anal., 235 (2020), 691-721.
doi: 10.1007/s00205-019-01429-x. |
[4] |
Y. Deng, H. Liu and G. Uhlmann,
On an inverse boundary problem arising in brain imaging, J. Differential Equations, 267 (2019), 2471-2502.
doi: 10.1016/j.jde.2019.03.019. |
[5] |
Z. Ding and Z. Li,
Distributed adaptive consensus control of nonlinear output-feedback systems on directed graphs, Automatica J. IFAC, 72 (2016), 46-52.
doi: 10.1016/j.automatica.2016.05.014. |
[6] |
N. Elia and S. K. Mitter,
Stabilization of linear systems with limited information, IEEE Trans. Automat. Contr., 46 (2001), 1384-1400.
doi: 10.1109/9.948466. |
[7] |
J. Feng, F. Yu and Y. Zhao,
Exponential synchronization of nonlinearly coupled complex networks with hybrid time-varying delays via impulsive control, Nonlinear Dynam., 85 (2016), 621-632.
doi: 10.1007/s11071-016-2711-7. |
[8] |
Q. Gan, F. Xiao, Y. Qin and J. Yang,
Fixed-time cluster synchronization of discontinuous directed community networks via periodically or aperiodically switching control, IEEE Access, 7 (2019), 83306-83318.
doi: 10.1109/ACCESS.2019.2924661. |
[9] |
X. Ge, F. Yang and Q.-L. Han,
Distributed networked control systems: A brief overview, Inf. Sci., 380 (2017), 117-131.
doi: 10.1016/j.ins.2015.07.047. |
[10] |
H. Hou, Q. Zhang and M. Zheng,
Cluster synchronization in nonlinear complex networks under sliding mode control, Nonlinear Dynam., 83 (2016), 739-749.
doi: 10.1007/s11071-015-2363-z. |
[11] |
C.-C. Hwang, J.-Y. Hsieh and R.-S. Lin,
A linear continuous feedback control of Chua's circuit, Chaos Solitons Fract., 8 (1997), 1507-1516.
doi: 10.1016/S0960-0779(96)00150-6. |
[12] |
A. Khan and M. Shahzad,
Synchronization of circular restricted three body problem with Lorenz hyper chaotic system using a robust adaptive sliding mode controller, Complexity, 18 (2013), 58-64.
doi: 10.1002/cplx.21459. |
[13] |
Q. Li, J. Guo, C. Sun, Y. Wu and Z. Ding,
Finite-time synchronization for a class of dynamical complex networks with nonidentical nodes and uncertain disturbance, J. Syst. Sci. Complex., 32 (2019), 818-834.
doi: 10.1007/s11424-018-8141-5. |
[14] |
J. Li, H. Liu and S. Ma, Determining a random Schrödinger operator: Both potential and source are random, preprint, arXiv: 1906.01240. Google Scholar |
[15] |
J. Li, H. Liu and S. Ma,
Determining a random Schrödinger equation with unknown source and potential, SIAM J. Math. Anal., 51 (2019), 3465-3491.
doi: 10.1137/18M1225276. |
[16] |
Q. Li, B. Shen, J. Liang and H. Shu,
Event-triggered synchronization control for complex networks with uncertain inner coupling, Int. J. Gen. Syst., 44 (2015), 212-225.
doi: 10.1080/03081079.2014.973725. |
[17] |
X. Liu and T. Chen,
Finite-time and fixed-time cluster synchronization with or without pinning control, IEEE Trans. Cybern., 48 (2018), 240-252.
doi: 10.1109/TCYB.2016.2630703. |
[18] |
X. Liu and T. Chen,
Cluster synchronization in directed networks via intermittent pinning control, IEEE Trans. Neural Netw., 22 (2011), 1009-1020.
doi: 10.1109/TNN.2011.2139224. |
[19] |
X. Liu, D. W. C. Ho, Q. Song and J. Cao,
Finite/fixed-time robust stabilization of switched discontinuous systems with disturbances, Nonlinear Dynam., 90 (2017), 2057-2068.
doi: 10.1007/s11071-017-3782-9. |
[20] |
X. Liu, D. W. C. Ho, Q. Song and W. Xu,
Finite/fixed-time pinning synchronization of complex networks with stochastic disturbances, IEEE Trans. Cybern., 49 (2019), 2398-2403.
doi: 10.1109/TCYB.2018.2821119. |
[21] |
H. Liu and G. Uhlmann, Determining both sound speed and internal source in thermo- and photo-acoustic tomography, Inverse Problems, 31 (2015), 10pp.
doi: 10.1088/0266-5611/31/10/105005. |
[22] |
H. Liu and J. Zou,
Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers, Inverse Problems, 22 (2006), 515-524.
doi: 10.1088/0266-5611/22/2/008. |
[23] |
A. Polyakov,
Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Trans. Automat. Control, 57 (2012), 2106-2110.
doi: 10.1109/TAC.2011.2179869. |
[24] |
S. Qiu, Y. Huang and S. Ren,
Finite-time synchronization of multi-weighted complex dynamical networks with and without coupling delay, Neurocomputing, 275 (2018), 1250-1260.
doi: 10.1016/j.neucom.2017.09.073. |
[25] |
J. Wang, T. Ru, J. Xia, Y. Wei and Z. Wang,
Finite-time synchronization for complex dynamic networks with semi-Markov switching topologies: An $H_{\infty}$ event-triggered control scheme, Appl. Math. Comput., 356 (2019), 235-251.
doi: 10.1016/j.amc.2019.03.037. |
[26] |
C. Xu, X. Yang, J. Lu, J. Feng, F.E. Alsaadi and T. Hayat,
Finite-time synchronization of networks via quantized intermittent pinning control, IEEE Trans. Cybern., 48 (2018), 3021-3027.
doi: 10.1109/TCYB.2017.2749248. |
[27] |
X. Yang, J. Cao, C. Xu and J. Feng,
Finite-time stabilization of switched dynamical networks with quantized couplings via quantized controller, Sci. China Technol. Sci., 61 (2018), 299-308.
doi: 10.1007/s11431-016-9054-y. |
[28] |
W. Yin, W. Yang and H. Liu, A neural network scheme for recovering scattering obstacles with limited phaseless far-field data, J. Comput. Phys., 417 (2020), 18pp.
doi: 10.1016/j.jcp.2020.109594. |
[29] |
D. Zhang, Y. Guo, J. Li and H. Liu, Retrieval of acoustic sources from multi-frequency phaseless data, Inverse Problems, 34 (2018), 21pp.
doi: 10.1088/1361-6420/aaccda. |
[30] |
W. Zhang, H. Li, C. Li, Z. Li and X. Yang,
Fixed-time synchronization criteria for complex networks via quantized pinning control, ISA Trans., 91 (2019), 151-156.
doi: 10.1016/j.isatra.2019.01.032. |
[31] |
W. Zhang, X. Yang and C. Li,
Fixed-time stochastic synchronization of complex networks via continuous control, IEEE Trans. Cybern., 49 (2019), 3099-3104.
doi: 10.1109/TCYB.2018.2839109. |
[32] |
C. Zhou, W. Zhang, X. Yang, C. Xu and J. Feng,
Finite-time synchronization of complex-valued neural networks with mixed delays and uncertain perturbations, Neural Process. Lett., 46 (2017), 271-291.
doi: 10.1007/s11063-017-9590-x. |
show all references
References:
[1] |
S. Boccaletti, V. Latora, Y. Moreno, M. Chavez and D.-U. Hwang,
Complex networks: Structure and dynamics, Phys. Rep., 424 (2006), 175-308.
doi: 10.1016/j.physrep.2005.10.009. |
[2] |
L. O. Chua, M. Itoh, L. Kocarev and K. Eckert,
Chaos synchronization in Chua's circuit, J. Circuits Systems Comput., 3 (1993), 93-108.
doi: 10.1142/S0218126693000071. |
[3] |
Y. Deng, J. Li and H. Liu,
On identifying magnetized anomalies using geomagnetic monitoring within a magnetohydrodynamic model, Arch. Ration. Mech. Anal., 235 (2020), 691-721.
doi: 10.1007/s00205-019-01429-x. |
[4] |
Y. Deng, H. Liu and G. Uhlmann,
On an inverse boundary problem arising in brain imaging, J. Differential Equations, 267 (2019), 2471-2502.
doi: 10.1016/j.jde.2019.03.019. |
[5] |
Z. Ding and Z. Li,
Distributed adaptive consensus control of nonlinear output-feedback systems on directed graphs, Automatica J. IFAC, 72 (2016), 46-52.
doi: 10.1016/j.automatica.2016.05.014. |
[6] |
N. Elia and S. K. Mitter,
Stabilization of linear systems with limited information, IEEE Trans. Automat. Contr., 46 (2001), 1384-1400.
doi: 10.1109/9.948466. |
[7] |
J. Feng, F. Yu and Y. Zhao,
Exponential synchronization of nonlinearly coupled complex networks with hybrid time-varying delays via impulsive control, Nonlinear Dynam., 85 (2016), 621-632.
doi: 10.1007/s11071-016-2711-7. |
[8] |
Q. Gan, F. Xiao, Y. Qin and J. Yang,
Fixed-time cluster synchronization of discontinuous directed community networks via periodically or aperiodically switching control, IEEE Access, 7 (2019), 83306-83318.
doi: 10.1109/ACCESS.2019.2924661. |
[9] |
X. Ge, F. Yang and Q.-L. Han,
Distributed networked control systems: A brief overview, Inf. Sci., 380 (2017), 117-131.
doi: 10.1016/j.ins.2015.07.047. |
[10] |
H. Hou, Q. Zhang and M. Zheng,
Cluster synchronization in nonlinear complex networks under sliding mode control, Nonlinear Dynam., 83 (2016), 739-749.
doi: 10.1007/s11071-015-2363-z. |
[11] |
C.-C. Hwang, J.-Y. Hsieh and R.-S. Lin,
A linear continuous feedback control of Chua's circuit, Chaos Solitons Fract., 8 (1997), 1507-1516.
doi: 10.1016/S0960-0779(96)00150-6. |
[12] |
A. Khan and M. Shahzad,
Synchronization of circular restricted three body problem with Lorenz hyper chaotic system using a robust adaptive sliding mode controller, Complexity, 18 (2013), 58-64.
doi: 10.1002/cplx.21459. |
[13] |
Q. Li, J. Guo, C. Sun, Y. Wu and Z. Ding,
Finite-time synchronization for a class of dynamical complex networks with nonidentical nodes and uncertain disturbance, J. Syst. Sci. Complex., 32 (2019), 818-834.
doi: 10.1007/s11424-018-8141-5. |
[14] |
J. Li, H. Liu and S. Ma, Determining a random Schrödinger operator: Both potential and source are random, preprint, arXiv: 1906.01240. Google Scholar |
[15] |
J. Li, H. Liu and S. Ma,
Determining a random Schrödinger equation with unknown source and potential, SIAM J. Math. Anal., 51 (2019), 3465-3491.
doi: 10.1137/18M1225276. |
[16] |
Q. Li, B. Shen, J. Liang and H. Shu,
Event-triggered synchronization control for complex networks with uncertain inner coupling, Int. J. Gen. Syst., 44 (2015), 212-225.
doi: 10.1080/03081079.2014.973725. |
[17] |
X. Liu and T. Chen,
Finite-time and fixed-time cluster synchronization with or without pinning control, IEEE Trans. Cybern., 48 (2018), 240-252.
doi: 10.1109/TCYB.2016.2630703. |
[18] |
X. Liu and T. Chen,
Cluster synchronization in directed networks via intermittent pinning control, IEEE Trans. Neural Netw., 22 (2011), 1009-1020.
doi: 10.1109/TNN.2011.2139224. |
[19] |
X. Liu, D. W. C. Ho, Q. Song and J. Cao,
Finite/fixed-time robust stabilization of switched discontinuous systems with disturbances, Nonlinear Dynam., 90 (2017), 2057-2068.
doi: 10.1007/s11071-017-3782-9. |
[20] |
X. Liu, D. W. C. Ho, Q. Song and W. Xu,
Finite/fixed-time pinning synchronization of complex networks with stochastic disturbances, IEEE Trans. Cybern., 49 (2019), 2398-2403.
doi: 10.1109/TCYB.2018.2821119. |
[21] |
H. Liu and G. Uhlmann, Determining both sound speed and internal source in thermo- and photo-acoustic tomography, Inverse Problems, 31 (2015), 10pp.
doi: 10.1088/0266-5611/31/10/105005. |
[22] |
H. Liu and J. Zou,
Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers, Inverse Problems, 22 (2006), 515-524.
doi: 10.1088/0266-5611/22/2/008. |
[23] |
A. Polyakov,
Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Trans. Automat. Control, 57 (2012), 2106-2110.
doi: 10.1109/TAC.2011.2179869. |
[24] |
S. Qiu, Y. Huang and S. Ren,
Finite-time synchronization of multi-weighted complex dynamical networks with and without coupling delay, Neurocomputing, 275 (2018), 1250-1260.
doi: 10.1016/j.neucom.2017.09.073. |
[25] |
J. Wang, T. Ru, J. Xia, Y. Wei and Z. Wang,
Finite-time synchronization for complex dynamic networks with semi-Markov switching topologies: An $H_{\infty}$ event-triggered control scheme, Appl. Math. Comput., 356 (2019), 235-251.
doi: 10.1016/j.amc.2019.03.037. |
[26] |
C. Xu, X. Yang, J. Lu, J. Feng, F.E. Alsaadi and T. Hayat,
Finite-time synchronization of networks via quantized intermittent pinning control, IEEE Trans. Cybern., 48 (2018), 3021-3027.
doi: 10.1109/TCYB.2017.2749248. |
[27] |
X. Yang, J. Cao, C. Xu and J. Feng,
Finite-time stabilization of switched dynamical networks with quantized couplings via quantized controller, Sci. China Technol. Sci., 61 (2018), 299-308.
doi: 10.1007/s11431-016-9054-y. |
[28] |
W. Yin, W. Yang and H. Liu, A neural network scheme for recovering scattering obstacles with limited phaseless far-field data, J. Comput. Phys., 417 (2020), 18pp.
doi: 10.1016/j.jcp.2020.109594. |
[29] |
D. Zhang, Y. Guo, J. Li and H. Liu, Retrieval of acoustic sources from multi-frequency phaseless data, Inverse Problems, 34 (2018), 21pp.
doi: 10.1088/1361-6420/aaccda. |
[30] |
W. Zhang, H. Li, C. Li, Z. Li and X. Yang,
Fixed-time synchronization criteria for complex networks via quantized pinning control, ISA Trans., 91 (2019), 151-156.
doi: 10.1016/j.isatra.2019.01.032. |
[31] |
W. Zhang, X. Yang and C. Li,
Fixed-time stochastic synchronization of complex networks via continuous control, IEEE Trans. Cybern., 49 (2019), 3099-3104.
doi: 10.1109/TCYB.2018.2839109. |
[32] |
C. Zhou, W. Zhang, X. Yang, C. Xu and J. Feng,
Finite-time synchronization of complex-valued neural networks with mixed delays and uncertain perturbations, Neural Process. Lett., 46 (2017), 271-291.
doi: 10.1007/s11063-017-9590-x. |






[1] |
Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323 |
[2] |
Yu-Jhe Huang, Zhong-Fu Huang, Jonq Juang, Yu-Hao Liang. Flocking of non-identical Cucker-Smale models on general coupling network. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1111-1127. doi: 10.3934/dcdsb.2020155 |
[3] |
Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077 |
[4] |
Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020 |
[5] |
Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011 |
[6] |
Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021022 |
[7] |
Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351 |
[8] |
Wenyuan Wang, Ran Xu. General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020179 |
[9] |
Duy Phan, Lassi Paunonen. Finite-dimensional controllers for robust regulation of boundary control systems. Mathematical Control & Related Fields, 2021, 11 (1) : 95-117. doi: 10.3934/mcrf.2020029 |
[10] |
Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571 |
[11] |
Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020046 |
[12] |
Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020444 |
[13] |
Leslaw Skrzypek, Yuncheng You. Feedback synchronization of FHN cellular neural networks. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021001 |
[14] |
Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262 |
[15] |
Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032 |
[16] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[17] |
Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052 |
[18] |
Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156 |
[19] |
Fabian Ziltener. Note on coisotropic Floer homology and leafwise fixed points. Electronic Research Archive, , () : -. doi: 10.3934/era.2021001 |
[20] |
Qiang Fu, Yanlong Zhang, Yushu Zhu, Ting Li. Network centralities, demographic disparities, and voluntary participation. Mathematical Foundations of Computing, 2020, 3 (4) : 249-262. doi: 10.3934/mfc.2020011 |
Impact Factor: 0.263
Tools
Metrics
Other articles
by authors
[Back to Top]