doi: 10.3934/era.2020104

Finite/fixed-time synchronization for complex networks via quantized adaptive control

Department of Applied Mathematics, Harbin University of Science and Technology, Harbin 150080, China

* Corresponding author: Yu-Jing Shi

Received  May 2020 Revised  July 2020 Published  September 2020

Fund Project: This work was supported by the National Natural Science Foundation of China (Grant no. 61673141) and Natural Science Foundation of Heilongjiang Province (Grant no. A2018007)

In this paper, a unified theoretical method is presented to implement the finite/fixed-time synchronization control for complex networks with uncertain inner coupling. The quantized controller and the quantized adaptive controller are designed to reduce the control cost and save the channel resources, respectively. By means of the linear matrix inequalities technique, two sufficient conditions are proposed to guarantee that the synchronization error system of the complex networks is finite/fixed-time stable in virtue of the Lyapunov stability theory. Moreover, two types of setting time, which are dependent and independent on the initial values, are given respectively. Finally, the effectiveness of the control strategy is verified by a simulation example.

Citation: Yu-Jing Shi, Yan Ma. Finite/fixed-time synchronization for complex networks via quantized adaptive control. Electronic Research Archive, doi: 10.3934/era.2020104
References:
[1]

S. BoccalettiV. LatoraY. MorenoM. Chavez and D.-U. Hwang, Complex networks: Structure and dynamics, Phys. Rep., 424 (2006), 175-308.  doi: 10.1016/j.physrep.2005.10.009.  Google Scholar

[2]

L. O. ChuaM. ItohL. Kocarev and K. Eckert, Chaos synchronization in Chua's circuit, J. Circuits Systems Comput., 3 (1993), 93-108.  doi: 10.1142/S0218126693000071.  Google Scholar

[3]

Y. DengJ. Li and H. Liu, On identifying magnetized anomalies using geomagnetic monitoring within a magnetohydrodynamic model, Arch. Ration. Mech. Anal., 235 (2020), 691-721.  doi: 10.1007/s00205-019-01429-x.  Google Scholar

[4]

Y. DengH. Liu and G. Uhlmann, On an inverse boundary problem arising in brain imaging, J. Differential Equations, 267 (2019), 2471-2502.  doi: 10.1016/j.jde.2019.03.019.  Google Scholar

[5]

Z. Ding and Z. Li, Distributed adaptive consensus control of nonlinear output-feedback systems on directed graphs, Automatica J. IFAC, 72 (2016), 46-52.  doi: 10.1016/j.automatica.2016.05.014.  Google Scholar

[6]

N. Elia and S. K. Mitter, Stabilization of linear systems with limited information, IEEE Trans. Automat. Contr., 46 (2001), 1384-1400.  doi: 10.1109/9.948466.  Google Scholar

[7]

J. FengF. Yu and Y. Zhao, Exponential synchronization of nonlinearly coupled complex networks with hybrid time-varying delays via impulsive control, Nonlinear Dynam., 85 (2016), 621-632.  doi: 10.1007/s11071-016-2711-7.  Google Scholar

[8]

Q. GanF. XiaoY. Qin and J. Yang, Fixed-time cluster synchronization of discontinuous directed community networks via periodically or aperiodically switching control, IEEE Access, 7 (2019), 83306-83318.  doi: 10.1109/ACCESS.2019.2924661.  Google Scholar

[9]

X. GeF. Yang and Q.-L. Han, Distributed networked control systems: A brief overview, Inf. Sci., 380 (2017), 117-131.  doi: 10.1016/j.ins.2015.07.047.  Google Scholar

[10]

H. HouQ. Zhang and M. Zheng, Cluster synchronization in nonlinear complex networks under sliding mode control, Nonlinear Dynam., 83 (2016), 739-749.  doi: 10.1007/s11071-015-2363-z.  Google Scholar

[11]

C.-C. HwangJ.-Y. Hsieh and R.-S. Lin, A linear continuous feedback control of Chua's circuit, Chaos Solitons Fract., 8 (1997), 1507-1516.  doi: 10.1016/S0960-0779(96)00150-6.  Google Scholar

[12]

A. Khan and M. Shahzad, Synchronization of circular restricted three body problem with Lorenz hyper chaotic system using a robust adaptive sliding mode controller, Complexity, 18 (2013), 58-64.  doi: 10.1002/cplx.21459.  Google Scholar

[13]

Q. LiJ. GuoC. SunY. Wu and Z. Ding, Finite-time synchronization for a class of dynamical complex networks with nonidentical nodes and uncertain disturbance, J. Syst. Sci. Complex., 32 (2019), 818-834.  doi: 10.1007/s11424-018-8141-5.  Google Scholar

[14]

J. Li, H. Liu and S. Ma, Determining a random Schrödinger operator: Both potential and source are random, preprint, arXiv: 1906.01240. Google Scholar

[15]

J. LiH. Liu and S. Ma, Determining a random Schrödinger equation with unknown source and potential, SIAM J. Math. Anal., 51 (2019), 3465-3491.  doi: 10.1137/18M1225276.  Google Scholar

[16]

Q. LiB. ShenJ. Liang and H. Shu, Event-triggered synchronization control for complex networks with uncertain inner coupling, Int. J. Gen. Syst., 44 (2015), 212-225.  doi: 10.1080/03081079.2014.973725.  Google Scholar

[17]

X. Liu and T. Chen, Finite-time and fixed-time cluster synchronization with or without pinning control, IEEE Trans. Cybern., 48 (2018), 240-252.  doi: 10.1109/TCYB.2016.2630703.  Google Scholar

[18]

X. Liu and T. Chen, Cluster synchronization in directed networks via intermittent pinning control, IEEE Trans. Neural Netw., 22 (2011), 1009-1020.  doi: 10.1109/TNN.2011.2139224.  Google Scholar

[19]

X. LiuD. W. C. HoQ. Song and J. Cao, Finite/fixed-time robust stabilization of switched discontinuous systems with disturbances, Nonlinear Dynam., 90 (2017), 2057-2068.  doi: 10.1007/s11071-017-3782-9.  Google Scholar

[20]

X. LiuD. W. C. HoQ. Song and W. Xu, Finite/fixed-time pinning synchronization of complex networks with stochastic disturbances, IEEE Trans. Cybern., 49 (2019), 2398-2403.  doi: 10.1109/TCYB.2018.2821119.  Google Scholar

[21]

H. Liu and G. Uhlmann, Determining both sound speed and internal source in thermo- and photo-acoustic tomography, Inverse Problems, 31 (2015), 10pp. doi: 10.1088/0266-5611/31/10/105005.  Google Scholar

[22]

H. Liu and J. Zou, Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers, Inverse Problems, 22 (2006), 515-524.  doi: 10.1088/0266-5611/22/2/008.  Google Scholar

[23]

A. Polyakov, Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Trans. Automat. Control, 57 (2012), 2106-2110.  doi: 10.1109/TAC.2011.2179869.  Google Scholar

[24]

S. QiuY. Huang and S. Ren, Finite-time synchronization of multi-weighted complex dynamical networks with and without coupling delay, Neurocomputing, 275 (2018), 1250-1260.  doi: 10.1016/j.neucom.2017.09.073.  Google Scholar

[25]

J. WangT. RuJ. XiaY. Wei and Z. Wang, Finite-time synchronization for complex dynamic networks with semi-Markov switching topologies: An $H_{\infty}$ event-triggered control scheme, Appl. Math. Comput., 356 (2019), 235-251.  doi: 10.1016/j.amc.2019.03.037.  Google Scholar

[26]

C. XuX. YangJ. LuJ. FengF.E. Alsaadi and T. Hayat, Finite-time synchronization of networks via quantized intermittent pinning control, IEEE Trans. Cybern., 48 (2018), 3021-3027.  doi: 10.1109/TCYB.2017.2749248.  Google Scholar

[27]

X. YangJ. CaoC. Xu and J. Feng, Finite-time stabilization of switched dynamical networks with quantized couplings via quantized controller, Sci. China Technol. Sci., 61 (2018), 299-308.  doi: 10.1007/s11431-016-9054-y.  Google Scholar

[28]

W. Yin, W. Yang and H. Liu, A neural network scheme for recovering scattering obstacles with limited phaseless far-field data, J. Comput. Phys., 417 (2020), 18pp. doi: 10.1016/j.jcp.2020.109594.  Google Scholar

[29]

D. Zhang, Y. Guo, J. Li and H. Liu, Retrieval of acoustic sources from multi-frequency phaseless data, Inverse Problems, 34 (2018), 21pp. doi: 10.1088/1361-6420/aaccda.  Google Scholar

[30]

W. ZhangH. LiC. LiZ. Li and X. Yang, Fixed-time synchronization criteria for complex networks via quantized pinning control, ISA Trans., 91 (2019), 151-156.  doi: 10.1016/j.isatra.2019.01.032.  Google Scholar

[31]

W. ZhangX. Yang and C. Li, Fixed-time stochastic synchronization of complex networks via continuous control, IEEE Trans. Cybern., 49 (2019), 3099-3104.  doi: 10.1109/TCYB.2018.2839109.  Google Scholar

[32]

C. ZhouW. ZhangX. YangC. Xu and J. Feng, Finite-time synchronization of complex-valued neural networks with mixed delays and uncertain perturbations, Neural Process. Lett., 46 (2017), 271-291.  doi: 10.1007/s11063-017-9590-x.  Google Scholar

show all references

References:
[1]

S. BoccalettiV. LatoraY. MorenoM. Chavez and D.-U. Hwang, Complex networks: Structure and dynamics, Phys. Rep., 424 (2006), 175-308.  doi: 10.1016/j.physrep.2005.10.009.  Google Scholar

[2]

L. O. ChuaM. ItohL. Kocarev and K. Eckert, Chaos synchronization in Chua's circuit, J. Circuits Systems Comput., 3 (1993), 93-108.  doi: 10.1142/S0218126693000071.  Google Scholar

[3]

Y. DengJ. Li and H. Liu, On identifying magnetized anomalies using geomagnetic monitoring within a magnetohydrodynamic model, Arch. Ration. Mech. Anal., 235 (2020), 691-721.  doi: 10.1007/s00205-019-01429-x.  Google Scholar

[4]

Y. DengH. Liu and G. Uhlmann, On an inverse boundary problem arising in brain imaging, J. Differential Equations, 267 (2019), 2471-2502.  doi: 10.1016/j.jde.2019.03.019.  Google Scholar

[5]

Z. Ding and Z. Li, Distributed adaptive consensus control of nonlinear output-feedback systems on directed graphs, Automatica J. IFAC, 72 (2016), 46-52.  doi: 10.1016/j.automatica.2016.05.014.  Google Scholar

[6]

N. Elia and S. K. Mitter, Stabilization of linear systems with limited information, IEEE Trans. Automat. Contr., 46 (2001), 1384-1400.  doi: 10.1109/9.948466.  Google Scholar

[7]

J. FengF. Yu and Y. Zhao, Exponential synchronization of nonlinearly coupled complex networks with hybrid time-varying delays via impulsive control, Nonlinear Dynam., 85 (2016), 621-632.  doi: 10.1007/s11071-016-2711-7.  Google Scholar

[8]

Q. GanF. XiaoY. Qin and J. Yang, Fixed-time cluster synchronization of discontinuous directed community networks via periodically or aperiodically switching control, IEEE Access, 7 (2019), 83306-83318.  doi: 10.1109/ACCESS.2019.2924661.  Google Scholar

[9]

X. GeF. Yang and Q.-L. Han, Distributed networked control systems: A brief overview, Inf. Sci., 380 (2017), 117-131.  doi: 10.1016/j.ins.2015.07.047.  Google Scholar

[10]

H. HouQ. Zhang and M. Zheng, Cluster synchronization in nonlinear complex networks under sliding mode control, Nonlinear Dynam., 83 (2016), 739-749.  doi: 10.1007/s11071-015-2363-z.  Google Scholar

[11]

C.-C. HwangJ.-Y. Hsieh and R.-S. Lin, A linear continuous feedback control of Chua's circuit, Chaos Solitons Fract., 8 (1997), 1507-1516.  doi: 10.1016/S0960-0779(96)00150-6.  Google Scholar

[12]

A. Khan and M. Shahzad, Synchronization of circular restricted three body problem with Lorenz hyper chaotic system using a robust adaptive sliding mode controller, Complexity, 18 (2013), 58-64.  doi: 10.1002/cplx.21459.  Google Scholar

[13]

Q. LiJ. GuoC. SunY. Wu and Z. Ding, Finite-time synchronization for a class of dynamical complex networks with nonidentical nodes and uncertain disturbance, J. Syst. Sci. Complex., 32 (2019), 818-834.  doi: 10.1007/s11424-018-8141-5.  Google Scholar

[14]

J. Li, H. Liu and S. Ma, Determining a random Schrödinger operator: Both potential and source are random, preprint, arXiv: 1906.01240. Google Scholar

[15]

J. LiH. Liu and S. Ma, Determining a random Schrödinger equation with unknown source and potential, SIAM J. Math. Anal., 51 (2019), 3465-3491.  doi: 10.1137/18M1225276.  Google Scholar

[16]

Q. LiB. ShenJ. Liang and H. Shu, Event-triggered synchronization control for complex networks with uncertain inner coupling, Int. J. Gen. Syst., 44 (2015), 212-225.  doi: 10.1080/03081079.2014.973725.  Google Scholar

[17]

X. Liu and T. Chen, Finite-time and fixed-time cluster synchronization with or without pinning control, IEEE Trans. Cybern., 48 (2018), 240-252.  doi: 10.1109/TCYB.2016.2630703.  Google Scholar

[18]

X. Liu and T. Chen, Cluster synchronization in directed networks via intermittent pinning control, IEEE Trans. Neural Netw., 22 (2011), 1009-1020.  doi: 10.1109/TNN.2011.2139224.  Google Scholar

[19]

X. LiuD. W. C. HoQ. Song and J. Cao, Finite/fixed-time robust stabilization of switched discontinuous systems with disturbances, Nonlinear Dynam., 90 (2017), 2057-2068.  doi: 10.1007/s11071-017-3782-9.  Google Scholar

[20]

X. LiuD. W. C. HoQ. Song and W. Xu, Finite/fixed-time pinning synchronization of complex networks with stochastic disturbances, IEEE Trans. Cybern., 49 (2019), 2398-2403.  doi: 10.1109/TCYB.2018.2821119.  Google Scholar

[21]

H. Liu and G. Uhlmann, Determining both sound speed and internal source in thermo- and photo-acoustic tomography, Inverse Problems, 31 (2015), 10pp. doi: 10.1088/0266-5611/31/10/105005.  Google Scholar

[22]

H. Liu and J. Zou, Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers, Inverse Problems, 22 (2006), 515-524.  doi: 10.1088/0266-5611/22/2/008.  Google Scholar

[23]

A. Polyakov, Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Trans. Automat. Control, 57 (2012), 2106-2110.  doi: 10.1109/TAC.2011.2179869.  Google Scholar

[24]

S. QiuY. Huang and S. Ren, Finite-time synchronization of multi-weighted complex dynamical networks with and without coupling delay, Neurocomputing, 275 (2018), 1250-1260.  doi: 10.1016/j.neucom.2017.09.073.  Google Scholar

[25]

J. WangT. RuJ. XiaY. Wei and Z. Wang, Finite-time synchronization for complex dynamic networks with semi-Markov switching topologies: An $H_{\infty}$ event-triggered control scheme, Appl. Math. Comput., 356 (2019), 235-251.  doi: 10.1016/j.amc.2019.03.037.  Google Scholar

[26]

C. XuX. YangJ. LuJ. FengF.E. Alsaadi and T. Hayat, Finite-time synchronization of networks via quantized intermittent pinning control, IEEE Trans. Cybern., 48 (2018), 3021-3027.  doi: 10.1109/TCYB.2017.2749248.  Google Scholar

[27]

X. YangJ. CaoC. Xu and J. Feng, Finite-time stabilization of switched dynamical networks with quantized couplings via quantized controller, Sci. China Technol. Sci., 61 (2018), 299-308.  doi: 10.1007/s11431-016-9054-y.  Google Scholar

[28]

W. Yin, W. Yang and H. Liu, A neural network scheme for recovering scattering obstacles with limited phaseless far-field data, J. Comput. Phys., 417 (2020), 18pp. doi: 10.1016/j.jcp.2020.109594.  Google Scholar

[29]

D. Zhang, Y. Guo, J. Li and H. Liu, Retrieval of acoustic sources from multi-frequency phaseless data, Inverse Problems, 34 (2018), 21pp. doi: 10.1088/1361-6420/aaccda.  Google Scholar

[30]

W. ZhangH. LiC. LiZ. Li and X. Yang, Fixed-time synchronization criteria for complex networks via quantized pinning control, ISA Trans., 91 (2019), 151-156.  doi: 10.1016/j.isatra.2019.01.032.  Google Scholar

[31]

W. ZhangX. Yang and C. Li, Fixed-time stochastic synchronization of complex networks via continuous control, IEEE Trans. Cybern., 49 (2019), 3099-3104.  doi: 10.1109/TCYB.2018.2839109.  Google Scholar

[32]

C. ZhouW. ZhangX. YangC. Xu and J. Feng, Finite-time synchronization of complex-valued neural networks with mixed delays and uncertain perturbations, Neural Process. Lett., 46 (2017), 271-291.  doi: 10.1007/s11063-017-9590-x.  Google Scholar

Figure 1.  Chua's circuit
Figure 2.  The trajectories of synchronization error without control
Figure 3.  The trajectories of finite-time synchronization errors $ e_{i}(t) \;(i = 1, \cdots, 5) $ with adaptive control
Figure 4.  The trajectories of fixed-time synchronization errors $ e_{i}(t)\; (i = 1, \cdots, 5) $ with adaptive control
Figure 5.  The trajectory of adaptive parameter $ \xi_{i}(t)\; (i = 1, \cdots, 5) $ for finite-time synchronization
Figure 6.  The trajectory of adaptive parameter $ \xi_{i}(t)\; (i = 1, \cdots, 5) $ for fixed-time synchronization
[1]

Samuel Bowong, Jean Luc Dimi. Adaptive synchronization of a class of uncertain chaotic systems. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 235-248. doi: 10.3934/dcdsb.2008.9.235

[2]

M. Syed Ali, L. Palanisamy, Nallappan Gunasekaran, Ahmed Alsaedi, Bashir Ahmad. Finite-time exponential synchronization of reaction-diffusion delayed complex-dynamical networks. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020395

[3]

Chol-Ung Choe, Thomas Dahms, Philipp Hövel, Eckehard Schöll. Control of synchrony by delay coupling in complex networks. Conference Publications, 2011, 2011 (Special) : 292-301. doi: 10.3934/proc.2011.2011.292

[4]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020182

[5]

Guoliang Cai, Lan Yao, Pei Hu, Xiulei Fang. Adaptive full state hybrid function projective synchronization of financial hyperchaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2019-2028. doi: 10.3934/dcdsb.2013.18.2019

[6]

Tingwen Huang, Guanrong Chen, Juergen Kurths. Synchronization of chaotic systems with time-varying coupling delays. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1071-1082. doi: 10.3934/dcdsb.2011.16.1071

[7]

Tingting Su, Xinsong Yang. Finite-time synchronization of competitive neural networks with mixed delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3655-3667. doi: 10.3934/dcdsb.2016115

[8]

Tianhu Yu, Jinde Cao, Chuangxia Huang. Finite-time cluster synchronization of coupled dynamical systems with impulsive effects. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020248

[9]

Fatiha Alabau-Boussouira, Vincent Perrollaz, Lionel Rosier. Finite-time stabilization of a network of strings. Mathematical Control & Related Fields, 2015, 5 (4) : 721-742. doi: 10.3934/mcrf.2015.5.721

[10]

Ruoxia Li, Huaiqin Wu, Xiaowei Zhang, Rong Yao. Adaptive projective synchronization of memristive neural networks with time-varying delays and stochastic perturbation. Mathematical Control & Related Fields, 2015, 5 (4) : 827-844. doi: 10.3934/mcrf.2015.5.827

[11]

Luís Tiago Paiva, Fernando A. C. C. Fontes. Adaptive time--mesh refinement in optimal control problems with state constraints. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4553-4572. doi: 10.3934/dcds.2015.35.4553

[12]

Juanjuan Huang, Yan Zhou, Xuerong Shi, Zuolei Wang. A single finite-time synchronization scheme of time-delay chaotic system with external periodic disturbance. Mathematical Foundations of Computing, 2019, 2 (4) : 333-346. doi: 10.3934/mfc.2019021

[13]

David J. Aldous. A stochastic complex network model. Electronic Research Announcements, 2003, 9: 152-161.

[14]

Lixin Xu, Wanquan Liu. A new recurrent neural network adaptive approach for host-gate way rate control protocol within intranets using ATM ABR service. Journal of Industrial & Management Optimization, 2005, 1 (3) : 389-404. doi: 10.3934/jimo.2005.1.389

[15]

Xiwei Liu, Tianping Chen, Wenlian Lu. Cluster synchronization for linearly coupled complex networks. Journal of Industrial & Management Optimization, 2011, 7 (1) : 87-101. doi: 10.3934/jimo.2011.7.87

[16]

Hongyan Yan, Yun Sun, Yuanguo Zhu. A linear-quadratic control problem of uncertain discrete-time switched systems. Journal of Industrial & Management Optimization, 2017, 13 (1) : 267-282. doi: 10.3934/jimo.2016016

[17]

Elena K. Kostousova. On control synthesis for uncertain dynamical discrete-time systems through polyhedral techniques. Conference Publications, 2015, 2015 (special) : 723-732. doi: 10.3934/proc.2015.0723

[18]

Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems. Journal of Industrial & Management Optimization, 2018, 14 (3) : 913-930. doi: 10.3934/jimo.2017082

[19]

Jianping Zhou, Yamin Liu, Ju H. Park, Qingkai Kong, Zhen Wang. Fault-tolerant anti-synchronization control for chaotic switched neural networks with time delay and reaction diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020357

[20]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020323

 Impact Factor: 0.263

Article outline

Figures and Tables

[Back to Top]