• Previous Article
    A conforming discontinuous Galerkin finite element method on rectangular partitions
  • ERA Home
  • This Issue
  • Next Article
    Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM
doi: 10.3934/era.2020105

Asymptotic behavior of the one-dimensional compressible micropolar fluid model

1. 

School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China

2. 

The Hubei Key Laboratory of Mathematical Physics, School of Mathematics, and Statistics, Central China Normal University, Wuhan 430079, China

3. 

School of Mathematics and Center for Nonlinear Studies, Northwest University, Xi'an 710127, China

* Corresponding author: Haibo Cui

Received  June 2020 Revised  August 2020 Published  September 2020

Fund Project: Cui and Gao were supported by the National Natural Science Foundation of China #11601164, and #11971183, the Fundamental Research Funds for the Central Universities(Grant No. ZQN-701). Yao was supported by the National Natural Science Foundation of China #11931013 and Natural Science Basic Research Program of Shaanxi(Program No. 2019JC-26)

In this paper, we study the large time behavior of the solution for one-dimensional compressible micropolar fluid model with large initial data. This model describes micro-rotational motions and spin inertia which is commonly used in the suspensions, animal blood, and liquid crystal. We get the uniform positive lower and upper bounds of the density and temperature independent of both space and time. In particular, we also obtain the asymptotic behavior of the micro-rotation velocity.

Citation: Haibo Cui, Junpei Gao, Lei Yao. Asymptotic behavior of the one-dimensional compressible micropolar fluid model. Electronic Research Archive, doi: 10.3934/era.2020105
References:
[1]

S. N. Antontsev, A. V. Kazhikhov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, Studies in Mathematics and its Applications, 22, North-Holland Publishing Co., Amsterdam, 1990.  Google Scholar

[2]

M. Chen, Global strong solutions for the viscous, micropolar, compressible flow, J. Partial Differ. Equ., 24 (2011), 158-164.  doi: 10.4208/jpde.v24.n2.5.  Google Scholar

[3]

Q. Chen and C. Miao, Global well-posedness for the micropolar fluid system in critical Besov spaces, J. Differential Equations, 252 (2012), 2698-2724.  doi: 10.1016/j.jde.2011.09.035.  Google Scholar

[4]

M. ChenX. Xu and J. Zhang, Global weak solutions of 3D compressible micropolar fluids with discontinuous initial data and vacuum, Commun. Math. Sci., 13 (2015), 225-247.  doi: 10.4310/CMS.2015.v13.n1.a11.  Google Scholar

[5]

H. Cui and Z.-A. Yao, Asymptotic behavior of compressible $p$-th power Newtonian fluid with large initial data, J. Differential Equations, 258 (2015), 919-953.  doi: 10.1016/j.jde.2014.10.011.  Google Scholar

[6]

H. Cui and H. Yin, Stationary solutions to the one-dimensional micropolar fluid model in a half line: Existence, stability and convergence rate, J. Math. Anal. Appl., 449 (2017), 464-489.  doi: 10.1016/j.jmaa.2016.11.065.  Google Scholar

[7]

A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1-18.  doi: 10.1512/iumj.1967.16.16001.  Google Scholar

[8]

A. C. Eringen, Microcontinuum Field Theories. I. Foundations and Solids, Springer-Verlag, New York, 1999. doi: 10.1007/978-1-4612-0555-5.  Google Scholar

[9]

Z. Feng and C. Zhu, Global classical large solution to compressible viscous micropolar and heat-conducting fluids with vacuum, Discrete Contin. Dyn. Syst., 39 (2019), 3069-3097.  doi: 10.3934/dcds.2019127.  Google Scholar

[10]

S. Jiang, Large-time behavior of solutions to the equations of a one-dimensional viscous polytropic ideal gas in unbounded domains, Comm. Math. Phys., 200 (1999), 181-193.  doi: 10.1007/s002200050526.  Google Scholar

[11]

S. Jiang, Remarks on the asymptotic behaviour of solutions to the compressible Navier-Stokes equations in the half-line, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 627-638.  doi: 10.1017/S0308210500001815.  Google Scholar

[12]

A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas, J. Appl. Math. Mech., 41 (1977), 273-282.  doi: 10.1016/0021-8928(77)90011-9.  Google Scholar

[13]

J. Li and Z. Liang, Some uniform estimates and large-time behavior of solutions to one-dimensional compressible Navier-Stokes system in unbounded domains with large data, Arch. Ration. Mech. Anal., 220 (2016), 1195-1208.  doi: 10.1007/s00205-015-0952-0.  Google Scholar

[14]

Q. Liu and P. Zhang, Optimal time decay of the compressible micropolar fluids, J. Differential Equations, 260 (2016), 7634-7661.  doi: 10.1016/j.jde.2016.01.037.  Google Scholar

[15]

G. Łukaszewicz, Micropolar Fluids. Theory and Applications, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 1999. doi: 10.1007/978-1-4612-0641-5.  Google Scholar

[16]

N. Mujaković, Global in time estimates for one-dimensional compressible viscous micropolar fluid model, Glas. Mat. Ser. Ⅲ, 40 (2005), 103-120.  doi: 10.3336/gm.40.1.10.  Google Scholar

[17]

N. Mujaković, One-dimensional flow of a compressible viscous micropolar fluid: Stabilization of the solution, in Proceedings of the Conference on Applied Mathematics and Scientific Computing, Springer, Dordrecht, 2005,253–262. doi: 10.1007/1-4020-3197-1_18.  Google Scholar

[18]

Y. QinT. Wang and G. Hu, The Cauchy problem for a 1D compressible viscous micropolar fluid model: Analysis of the stabilization and the regularity, Nonlinear Anal. Real World Appl., 13 (2012), 1010-1029.  doi: 10.1016/j.nonrwa.2010.10.023.  Google Scholar

[19]

H. Yin, Stability of stationary solutions for inflow problem on the micropolar fluid model, Z. Angew. Math. Phys., 68 (2017), 13pp. doi: 10.1007/s00033-017-0789-5.  Google Scholar

show all references

References:
[1]

S. N. Antontsev, A. V. Kazhikhov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, Studies in Mathematics and its Applications, 22, North-Holland Publishing Co., Amsterdam, 1990.  Google Scholar

[2]

M. Chen, Global strong solutions for the viscous, micropolar, compressible flow, J. Partial Differ. Equ., 24 (2011), 158-164.  doi: 10.4208/jpde.v24.n2.5.  Google Scholar

[3]

Q. Chen and C. Miao, Global well-posedness for the micropolar fluid system in critical Besov spaces, J. Differential Equations, 252 (2012), 2698-2724.  doi: 10.1016/j.jde.2011.09.035.  Google Scholar

[4]

M. ChenX. Xu and J. Zhang, Global weak solutions of 3D compressible micropolar fluids with discontinuous initial data and vacuum, Commun. Math. Sci., 13 (2015), 225-247.  doi: 10.4310/CMS.2015.v13.n1.a11.  Google Scholar

[5]

H. Cui and Z.-A. Yao, Asymptotic behavior of compressible $p$-th power Newtonian fluid with large initial data, J. Differential Equations, 258 (2015), 919-953.  doi: 10.1016/j.jde.2014.10.011.  Google Scholar

[6]

H. Cui and H. Yin, Stationary solutions to the one-dimensional micropolar fluid model in a half line: Existence, stability and convergence rate, J. Math. Anal. Appl., 449 (2017), 464-489.  doi: 10.1016/j.jmaa.2016.11.065.  Google Scholar

[7]

A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1-18.  doi: 10.1512/iumj.1967.16.16001.  Google Scholar

[8]

A. C. Eringen, Microcontinuum Field Theories. I. Foundations and Solids, Springer-Verlag, New York, 1999. doi: 10.1007/978-1-4612-0555-5.  Google Scholar

[9]

Z. Feng and C. Zhu, Global classical large solution to compressible viscous micropolar and heat-conducting fluids with vacuum, Discrete Contin. Dyn. Syst., 39 (2019), 3069-3097.  doi: 10.3934/dcds.2019127.  Google Scholar

[10]

S. Jiang, Large-time behavior of solutions to the equations of a one-dimensional viscous polytropic ideal gas in unbounded domains, Comm. Math. Phys., 200 (1999), 181-193.  doi: 10.1007/s002200050526.  Google Scholar

[11]

S. Jiang, Remarks on the asymptotic behaviour of solutions to the compressible Navier-Stokes equations in the half-line, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 627-638.  doi: 10.1017/S0308210500001815.  Google Scholar

[12]

A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas, J. Appl. Math. Mech., 41 (1977), 273-282.  doi: 10.1016/0021-8928(77)90011-9.  Google Scholar

[13]

J. Li and Z. Liang, Some uniform estimates and large-time behavior of solutions to one-dimensional compressible Navier-Stokes system in unbounded domains with large data, Arch. Ration. Mech. Anal., 220 (2016), 1195-1208.  doi: 10.1007/s00205-015-0952-0.  Google Scholar

[14]

Q. Liu and P. Zhang, Optimal time decay of the compressible micropolar fluids, J. Differential Equations, 260 (2016), 7634-7661.  doi: 10.1016/j.jde.2016.01.037.  Google Scholar

[15]

G. Łukaszewicz, Micropolar Fluids. Theory and Applications, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 1999. doi: 10.1007/978-1-4612-0641-5.  Google Scholar

[16]

N. Mujaković, Global in time estimates for one-dimensional compressible viscous micropolar fluid model, Glas. Mat. Ser. Ⅲ, 40 (2005), 103-120.  doi: 10.3336/gm.40.1.10.  Google Scholar

[17]

N. Mujaković, One-dimensional flow of a compressible viscous micropolar fluid: Stabilization of the solution, in Proceedings of the Conference on Applied Mathematics and Scientific Computing, Springer, Dordrecht, 2005,253–262. doi: 10.1007/1-4020-3197-1_18.  Google Scholar

[18]

Y. QinT. Wang and G. Hu, The Cauchy problem for a 1D compressible viscous micropolar fluid model: Analysis of the stabilization and the regularity, Nonlinear Anal. Real World Appl., 13 (2012), 1010-1029.  doi: 10.1016/j.nonrwa.2010.10.023.  Google Scholar

[19]

H. Yin, Stability of stationary solutions for inflow problem on the micropolar fluid model, Z. Angew. Math. Phys., 68 (2017), 13pp. doi: 10.1007/s00033-017-0789-5.  Google Scholar

[1]

Xin Zhong. Singularity formation to the nonhomogeneous magneto-micropolar fluid equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021021

[2]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[3]

Wenlong Sun, Jiaqi Cheng, Xiaoying Han. Random attractors for 2D stochastic micropolar fluid flows on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 693-716. doi: 10.3934/dcdsb.2020189

[4]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[5]

Musen Xue, Guowei Zhu. Partial myopia vs. forward-looking behaviors in a dynamic pricing and replenishment model for perishable items. Journal of Industrial & Management Optimization, 2021, 17 (2) : 633-648. doi: 10.3934/jimo.2019126

[6]

Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415

[7]

Kengo Nakai, Yoshitaka Saiki. Machine-learning construction of a model for a macroscopic fluid variable using the delay-coordinate of a scalar observable. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1079-1092. doi: 10.3934/dcdss.2020352

[8]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[9]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[10]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[11]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[12]

Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083

[13]

Zsolt Saffer, Miklós Telek, Gábor Horváth. Analysis of Markov-modulated fluid polling systems with gated discipline. Journal of Industrial & Management Optimization, 2021, 17 (2) : 575-599. doi: 10.3934/jimo.2019124

[14]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[15]

Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021018

[16]

Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020377

[17]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[18]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[19]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[20]

Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128

 Impact Factor: 0.263

Article outline

[Back to Top]