
-
Previous Article
Integrating evolution equations using Fredholm determinants
- ERA Home
- This Issue
-
Next Article
A geometric-analytic study of linear differential equations of order two
On a model of COVID-19 dynamics
Missouri State University, 901 National Avenue, Springfield, MO 65897, USA |
A model of COVID-19 in an interconnected network of communities is studied. This model considers the dynamics of susceptible, asymptomatic and symptomatic individuals, deceased but not yet buried people, as well as the dynamics of the virus or pathogen at connected nodes or communities. People can move between communities carrying the virus to any node in the region of $ n $ communities (or patches). This model considers both virus direct (person to person) and indirect (contaminated environment to person) transmissions. Using either matrix and graph-theoretic methods and some combinatorial identities, appropriate Lyapunov functions are constructed to study global stability properties of both the disease-free and the endemic equilibrium of the corresponding system of $ 5n $ differential equations.
References:
[1] |
A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Classics in Applied Mathematics, 9, SIAM, Philadelphia, PA, 1994.
doi: 10.1137/1.9781611971262. |
[2] |
K. Bessey, M. Mavis, J. Rebaza and J. Zhang,
Global stability analysis of a general model of Zika virus, Nonauton. Dyn. Syst., 6 (2019), 18-34.
doi: 10.1515/msds-2019-0002. |
[3] |
M. Calmon, Considerations of coronavirus (COVID-19) impact and the management of the dead in Brazil, Forensic Science Internat: Reports, 2020. In press.
doi: 10.1016/j.fsir.2020.100110. |
[4] |
Center for Disease Control and Prevention (CDC), Coronavirus Disease (COVID-19), 2020. Available from: https://www.cdc.gov/coronavirus/2019-ncov/index.html. Google Scholar |
[5] |
C. Cross, A. Edwards, D. Mercadante and J. Rebaza,
Dynamics of a networked connectivity model of epidemics, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 3379-3390.
doi: 10.3934/dcdsb.2016102. |
[6] |
R. Cui, Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated incidence rate, Discrete Contin. Dyn. Syst. Ser. B, (2020).
doi: 10.3934/dcdsb.2020217. |
[7] |
O. Diekmann, J. A. Heesterbeek and J. A. Metz,
On the definition and the computation of the basic reproduction number ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.
doi: 10.1007/BF00178324. |
[8] |
M. Gatto, E. Bertuzzo, L. Mari, S. Miccoli, L. Carraro, R. Casagrandi and A. Rinaldo,
Spread and dynamics of the COVID-19 epidemic in Italy: Effects of emergency containment measures, Proceed. Nat. Acad. of Scienc., 117 (2020), 10484-10491.
doi: 10.1073/pnas.2004978117. |
[9] |
M. Gatto, L. Mari, E. Bertuzzo, R. Casagrandi, L. Righetto, I. Rodriguez-Iturbe and A. Rinaldo,
Generalized reproduction numbers and the prediction of patterns in waterborne disease, Proceed. Nat. Acad. of Scienc., 109 (2012), 19703-19708.
doi: 10.1073/pnas.1217567109. |
[10] |
G. Giordano, F. Blanchini, R. Bruno, P. Colaneri, A. Di Filippo, A. Di Matteo and M. Colaneri,
Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy, Nature Medicine, 26 (2020), 855-860.
doi: 10.1038/s41591-020-0883-7. |
[11] |
J. K. Hale, Ordinary Differential Equations, Second edition. Robert E. Krieger Publishing Co., Inc., Huntington, N.Y., 1980. |
[12] |
A. Iggidr, G. Sallet and M. O. Souza,
On the dynamics of a class of multi-group models for vector-borne diseases, J. Math. Anal. Appl., 441 (2016), 723-743.
doi: 10.1016/j.jmaa.2016.04.003. |
[13] |
B. Ivorra, M. R. Ferrández, M. Vela-Pérez and A. M. Ramos, Mathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) taking into account the undetected infections. The case of China, Commun. Nonlinear Sci. Numer. Simul., 88 (2020), 105303, 21 pp.
doi: 10.1016/j.cnsns.2020.105303. |
[14] |
M. Y. Li, J. R. Graef, L. Wang and J. Karsai,
Global dynamics of a SEIR model with varying total population size, Math. Biosci., 160 (1999), 191-213.
doi: 10.1016/S0025-5564(99)00030-9. |
[15] |
M. Y. Li and Z. Shuai,
Global stability of an epidemic model in a patchy environment, Can. Appl. Math. Q., 17 (2009), 175-187.
|
[16] |
M. Y. Li and Z. Shuai,
Global stability problems for coupled systems of differential equation on networks, J. Differential Equations, 248 (2010), 1-20.
doi: 10.1016/j.jde.2009.09.003. |
[17] |
S. Li and S. Guo, Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions, Discrete Contin. Dyn. Syst. Ser. B, (2020).
doi: 10.3934/dcdsb.2020201. |
[18] |
M. Mandal, S. Jana, S. K. Nandi, A. Khatua, S. Adak and T. K. Kar, A model based study on the dynamics of COVID-19: Prediction and control, Chaos Solitons Fractals, 136 (2020), 109889, 12 pp.
doi: 10.1016/j.chaos.2020.109889. |
[19] |
T. Sasaki and T. Suzuki,
Asymptotic behaviour of the solutions to a virus dynamics model with diffusion, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 525-541.
doi: 10.3934/dcdsb.2017206. |
[20] |
Z. Shuai and P. van den Driessche,
Global stability of infectious disease models using Lyapunov functions, SIAM J. Appl. Math., 73 (2013), 1513-1532.
doi: 10.1137/120876642. |
[21] |
Z. Shuai and P. van den Driessche,
Modelling and control of cholera on networks with a common water source, J. Biol. Dyn., 9 (2015), 90-103.
doi: 10.1080/17513758.2014.944226. |
[22] |
H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511530043.![]() ![]() |
[23] |
J. P. Tian, S. Liao and J. Wang, Analyzing the infection dynamics and control strategies of cholera, Discrete Contin. Dyn. Syst., (2013), 747–757.
doi: 10.3934/proc.2013.2013.747. |
[24] |
P. van den Driessche and J. Watmough,
Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6. |
[25] |
P. van den Driessche and J. Watmough,
Further notes on the basic reproduction number, Lecture Notes in Mathematics, 1945 (2008), 159-178.
doi: 10.1007/978-3-540-78911-6_6. |
[26] |
C. Yang and J. Wang,
A mathematical model for the novel coronavirus epidemic in Wuhan, China, Math. Biosci. Eng., 17 (2020), 2708-2724.
doi: 10.3934/mbe.2020148. |
[27] |
R. Zhang, Y. Li, A. L. Zhang, Y. Wang and M. J. Molina,
Identifying airborne transmission as the dominant route for the spread of COVID-19, Proc. of National Acad. of Sciences, 117 (2020), 14857-14863.
doi: 10.1073/pnas.2009637117. |
show all references
References:
[1] |
A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Classics in Applied Mathematics, 9, SIAM, Philadelphia, PA, 1994.
doi: 10.1137/1.9781611971262. |
[2] |
K. Bessey, M. Mavis, J. Rebaza and J. Zhang,
Global stability analysis of a general model of Zika virus, Nonauton. Dyn. Syst., 6 (2019), 18-34.
doi: 10.1515/msds-2019-0002. |
[3] |
M. Calmon, Considerations of coronavirus (COVID-19) impact and the management of the dead in Brazil, Forensic Science Internat: Reports, 2020. In press.
doi: 10.1016/j.fsir.2020.100110. |
[4] |
Center for Disease Control and Prevention (CDC), Coronavirus Disease (COVID-19), 2020. Available from: https://www.cdc.gov/coronavirus/2019-ncov/index.html. Google Scholar |
[5] |
C. Cross, A. Edwards, D. Mercadante and J. Rebaza,
Dynamics of a networked connectivity model of epidemics, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 3379-3390.
doi: 10.3934/dcdsb.2016102. |
[6] |
R. Cui, Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated incidence rate, Discrete Contin. Dyn. Syst. Ser. B, (2020).
doi: 10.3934/dcdsb.2020217. |
[7] |
O. Diekmann, J. A. Heesterbeek and J. A. Metz,
On the definition and the computation of the basic reproduction number ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.
doi: 10.1007/BF00178324. |
[8] |
M. Gatto, E. Bertuzzo, L. Mari, S. Miccoli, L. Carraro, R. Casagrandi and A. Rinaldo,
Spread and dynamics of the COVID-19 epidemic in Italy: Effects of emergency containment measures, Proceed. Nat. Acad. of Scienc., 117 (2020), 10484-10491.
doi: 10.1073/pnas.2004978117. |
[9] |
M. Gatto, L. Mari, E. Bertuzzo, R. Casagrandi, L. Righetto, I. Rodriguez-Iturbe and A. Rinaldo,
Generalized reproduction numbers and the prediction of patterns in waterborne disease, Proceed. Nat. Acad. of Scienc., 109 (2012), 19703-19708.
doi: 10.1073/pnas.1217567109. |
[10] |
G. Giordano, F. Blanchini, R. Bruno, P. Colaneri, A. Di Filippo, A. Di Matteo and M. Colaneri,
Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy, Nature Medicine, 26 (2020), 855-860.
doi: 10.1038/s41591-020-0883-7. |
[11] |
J. K. Hale, Ordinary Differential Equations, Second edition. Robert E. Krieger Publishing Co., Inc., Huntington, N.Y., 1980. |
[12] |
A. Iggidr, G. Sallet and M. O. Souza,
On the dynamics of a class of multi-group models for vector-borne diseases, J. Math. Anal. Appl., 441 (2016), 723-743.
doi: 10.1016/j.jmaa.2016.04.003. |
[13] |
B. Ivorra, M. R. Ferrández, M. Vela-Pérez and A. M. Ramos, Mathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) taking into account the undetected infections. The case of China, Commun. Nonlinear Sci. Numer. Simul., 88 (2020), 105303, 21 pp.
doi: 10.1016/j.cnsns.2020.105303. |
[14] |
M. Y. Li, J. R. Graef, L. Wang and J. Karsai,
Global dynamics of a SEIR model with varying total population size, Math. Biosci., 160 (1999), 191-213.
doi: 10.1016/S0025-5564(99)00030-9. |
[15] |
M. Y. Li and Z. Shuai,
Global stability of an epidemic model in a patchy environment, Can. Appl. Math. Q., 17 (2009), 175-187.
|
[16] |
M. Y. Li and Z. Shuai,
Global stability problems for coupled systems of differential equation on networks, J. Differential Equations, 248 (2010), 1-20.
doi: 10.1016/j.jde.2009.09.003. |
[17] |
S. Li and S. Guo, Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions, Discrete Contin. Dyn. Syst. Ser. B, (2020).
doi: 10.3934/dcdsb.2020201. |
[18] |
M. Mandal, S. Jana, S. K. Nandi, A. Khatua, S. Adak and T. K. Kar, A model based study on the dynamics of COVID-19: Prediction and control, Chaos Solitons Fractals, 136 (2020), 109889, 12 pp.
doi: 10.1016/j.chaos.2020.109889. |
[19] |
T. Sasaki and T. Suzuki,
Asymptotic behaviour of the solutions to a virus dynamics model with diffusion, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 525-541.
doi: 10.3934/dcdsb.2017206. |
[20] |
Z. Shuai and P. van den Driessche,
Global stability of infectious disease models using Lyapunov functions, SIAM J. Appl. Math., 73 (2013), 1513-1532.
doi: 10.1137/120876642. |
[21] |
Z. Shuai and P. van den Driessche,
Modelling and control of cholera on networks with a common water source, J. Biol. Dyn., 9 (2015), 90-103.
doi: 10.1080/17513758.2014.944226. |
[22] |
H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511530043.![]() ![]() |
[23] |
J. P. Tian, S. Liao and J. Wang, Analyzing the infection dynamics and control strategies of cholera, Discrete Contin. Dyn. Syst., (2013), 747–757.
doi: 10.3934/proc.2013.2013.747. |
[24] |
P. van den Driessche and J. Watmough,
Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6. |
[25] |
P. van den Driessche and J. Watmough,
Further notes on the basic reproduction number, Lecture Notes in Mathematics, 1945 (2008), 159-178.
doi: 10.1007/978-3-540-78911-6_6. |
[26] |
C. Yang and J. Wang,
A mathematical model for the novel coronavirus epidemic in Wuhan, China, Math. Biosci. Eng., 17 (2020), 2708-2724.
doi: 10.3934/mbe.2020148. |
[27] |
R. Zhang, Y. Li, A. L. Zhang, Y. Wang and M. J. Molina,
Identifying airborne transmission as the dominant route for the spread of COVID-19, Proc. of National Acad. of Sciences, 117 (2020), 14857-14863.
doi: 10.1073/pnas.2009637117. |


[1] |
John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021004 |
[2] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[3] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[4] |
Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003 |
[5] |
Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021007 |
[6] |
Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190 |
[7] |
Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020136 |
[8] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[9] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[10] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
[11] |
Davide La Torre, Simone Marsiglio, Franklin Mendivil, Fabio Privileggi. Public debt dynamics under ambiguity by means of iterated function systems on density functions. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021070 |
[12] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[13] |
Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021005 |
[14] |
Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065 |
[15] |
Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198 |
[16] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[17] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[18] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[19] |
Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021066 |
[20] |
Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021068 |
Impact Factor: 0.263
Tools
Metrics
Other articles
by authors
[Back to Top]