doi: 10.3934/era.2020109

Integrating evolution equations using Fredholm determinants

Ohio State University, Newark, 1179 University Drive, Newark, OH 43055, USA

* Corresponding author: Feride Tığlay

Received  January 2020 Revised  August 2020 Published  October 2020

We outline the construction of special functions in terms of Fredholm determinants to solve boundary value problems of the string spectral problem. Our motivation is that the string spectral problem is related to the spectral equations in Lax pairs of at least three nonlinear evolution equations from mathematical physics.

Citation: Feride Tığlay. Integrating evolution equations using Fredholm determinants. Electronic Research Archive, doi: 10.3934/era.2020109
References:
[1]

V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses application à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble), 16 (1966), 319-361.  doi: 10.5802/aif.233.  Google Scholar

[2]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[3]

K. ColvilleD. Gomez and J. Szmigielski, On isospectral deformations of an inhomogeneous string, Comm. Math. Phys., 348 (2016), 771-802.  doi: 10.1007/s00220-016-2711-y.  Google Scholar

[4]

R. E. Eaves, A sufficient condition for the convergence of an infinite determinant, SIAM J. Appl. Math., 18 (1970), 652-657.  doi: 10.1137/0118058.  Google Scholar

[5]

B. Fuchssteiner and A. S. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D, 4 (1981/82), 47-66.  doi: 10.1016/0167-2789(81)90004-X.  Google Scholar

[6]

J. K. Hunter and R. Saxton, Dynamics of director fields, SIAM J. Appl. Math., 51 (1991), 1498-1521.  doi: 10.1137/0151075.  Google Scholar

[7]

I. S. Kac and G. Krein, On the spectral functions of the string, Amer. Math. Soc. Transl., 103 (1974), 19-102.   Google Scholar

[8]

B. KhesinJ. Lenells and G. Misiołek, Generalized Hunter-Saxton equation and the geometry of the group of circle diffeomorphisms, Math. Ann., 342 (2008), 617-656.  doi: 10.1007/s00208-008-0250-3.  Google Scholar

[9]

B. Khesin and G. Misiołek, Euler equations on homogeneous spaces and Virasoro orbits, Adv. Math., 176 (2003), 116-144.  doi: 10.1016/S0001-8708(02)00063-4.  Google Scholar

[10]

B. Khesin and R. Wendt, The Geometry of Infinite-Dimensional Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 51, Springer-Verlag, Berlin, 2009.  Google Scholar

[11]

A. A. Kirillov, Infinite-dimensional Lie groups: Their orbits, invariants and representations. The geometry of moments, Lect. Notes in Math., Springer-Verlag, New York, 970 (1982), 101–123. doi: 10.1007/BFb0066026.  Google Scholar

[12]

A. A. Kirillov and D. V. Yuriev, Kähler geometry of the infinite-dimensional homogeneous space $M = {\rm{Diff}}_+ (S^1)/{\rm{Rot}}(S^1)$, Funktsional. Anal. i Prilozhen., 21 (1987), 35-46.   Google Scholar

[13]

S. Lang, Differential Manifolds, Second edition. Springer-Verlag, New York, 1985. doi: 10.1007/978-1-4684-0265-0.  Google Scholar

[14]

J. LenellsG. Misiołek and F. Tiğlay, Integrable evolution equations on spaces of tensor densities and their peakon solutions, Comm. Math. Phys., 299 (2010), 129-161.  doi: 10.1007/s00220-010-1069-9.  Google Scholar

[15]

H. P. McKean, Fredholm determinants and the Camassa-Holm hierarchy, Comm. Pure Appl. Math., 56 (2003), 638-680.  doi: 10.1002/cpa.10069.  Google Scholar

[16]

H. P. McKean, Breakdown of the Camassa-Holm equation, Comm. Pure Appl. Math., 57 (2004), 416-418.  doi: 10.1002/cpa.20003.  Google Scholar

[17]

M. Taylor, Pseudodifferential Operators and Nonlinear PDE, Birkhäuser Boston, Inc., Boston, MA, 1991. doi: 10.1007/978-1-4612-0431-2.  Google Scholar

[18]

F. Tiğlay and C. Vizman, Generalized Euler-Poincaré equations on Lie groups and homogeneous spaces, orbit invariants and applications, Lett. Math. Phys., 97 (2011), 45-60.  doi: 10.1007/s11005-011-0464-2.  Google Scholar

show all references

References:
[1]

V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses application à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble), 16 (1966), 319-361.  doi: 10.5802/aif.233.  Google Scholar

[2]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[3]

K. ColvilleD. Gomez and J. Szmigielski, On isospectral deformations of an inhomogeneous string, Comm. Math. Phys., 348 (2016), 771-802.  doi: 10.1007/s00220-016-2711-y.  Google Scholar

[4]

R. E. Eaves, A sufficient condition for the convergence of an infinite determinant, SIAM J. Appl. Math., 18 (1970), 652-657.  doi: 10.1137/0118058.  Google Scholar

[5]

B. Fuchssteiner and A. S. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D, 4 (1981/82), 47-66.  doi: 10.1016/0167-2789(81)90004-X.  Google Scholar

[6]

J. K. Hunter and R. Saxton, Dynamics of director fields, SIAM J. Appl. Math., 51 (1991), 1498-1521.  doi: 10.1137/0151075.  Google Scholar

[7]

I. S. Kac and G. Krein, On the spectral functions of the string, Amer. Math. Soc. Transl., 103 (1974), 19-102.   Google Scholar

[8]

B. KhesinJ. Lenells and G. Misiołek, Generalized Hunter-Saxton equation and the geometry of the group of circle diffeomorphisms, Math. Ann., 342 (2008), 617-656.  doi: 10.1007/s00208-008-0250-3.  Google Scholar

[9]

B. Khesin and G. Misiołek, Euler equations on homogeneous spaces and Virasoro orbits, Adv. Math., 176 (2003), 116-144.  doi: 10.1016/S0001-8708(02)00063-4.  Google Scholar

[10]

B. Khesin and R. Wendt, The Geometry of Infinite-Dimensional Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 51, Springer-Verlag, Berlin, 2009.  Google Scholar

[11]

A. A. Kirillov, Infinite-dimensional Lie groups: Their orbits, invariants and representations. The geometry of moments, Lect. Notes in Math., Springer-Verlag, New York, 970 (1982), 101–123. doi: 10.1007/BFb0066026.  Google Scholar

[12]

A. A. Kirillov and D. V. Yuriev, Kähler geometry of the infinite-dimensional homogeneous space $M = {\rm{Diff}}_+ (S^1)/{\rm{Rot}}(S^1)$, Funktsional. Anal. i Prilozhen., 21 (1987), 35-46.   Google Scholar

[13]

S. Lang, Differential Manifolds, Second edition. Springer-Verlag, New York, 1985. doi: 10.1007/978-1-4684-0265-0.  Google Scholar

[14]

J. LenellsG. Misiołek and F. Tiğlay, Integrable evolution equations on spaces of tensor densities and their peakon solutions, Comm. Math. Phys., 299 (2010), 129-161.  doi: 10.1007/s00220-010-1069-9.  Google Scholar

[15]

H. P. McKean, Fredholm determinants and the Camassa-Holm hierarchy, Comm. Pure Appl. Math., 56 (2003), 638-680.  doi: 10.1002/cpa.10069.  Google Scholar

[16]

H. P. McKean, Breakdown of the Camassa-Holm equation, Comm. Pure Appl. Math., 57 (2004), 416-418.  doi: 10.1002/cpa.20003.  Google Scholar

[17]

M. Taylor, Pseudodifferential Operators and Nonlinear PDE, Birkhäuser Boston, Inc., Boston, MA, 1991. doi: 10.1007/978-1-4612-0431-2.  Google Scholar

[18]

F. Tiğlay and C. Vizman, Generalized Euler-Poincaré equations on Lie groups and homogeneous spaces, orbit invariants and applications, Lett. Math. Phys., 97 (2011), 45-60.  doi: 10.1007/s11005-011-0464-2.  Google Scholar

[1]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[2]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[3]

Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304

[4]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[5]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[6]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[7]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[8]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[9]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[10]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[11]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[12]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[13]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[14]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[15]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[16]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[17]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[18]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[19]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[20]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

 Impact Factor: 0.263

Metrics

  • PDF downloads (22)
  • HTML views (65)
  • Cited by (0)

Other articles
by authors

[Back to Top]