-
Previous Article
The sharp time decay rate of the isentropic Navier-Stokes system in $ {\mathop{\mathbb R\kern 0pt}\nolimits}^3 $
- ERA Home
- This Issue
-
Next Article
Some recent developments in the unique determinations in phaseless inverse acoustic scattering theory
Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case
School of Mathematics and Information Science, Shandong Technology and Business University, Yantai 264005, China |
This paper is considered with the quasilinear elliptic equation $ \Delta_{p}u = b(x)f(u),\,u(x)>0,\,x\in\Omega, $ where $ \Omega $ is an exterior domain with compact smooth boundary, $ b\in \rm C(\Omega) $ is non-negative in $ \Omega $ and may be singular or vanish on $ \partial\Omega $, $ f\in C[0, \infty) $ is positive and increasing on $ (0, \infty) $ which satisfies a generalized Keller-Osserman condition and is regularly varying at infinity with critical index $ p-1 $. By structuring a new comparison function, we establish the new asymptotic behavior of large solutions to the above equation in the exterior domain. We find that the lower term of $ f $ has an important influence on the asymptotic behavior of large solutions. And then we further establish the uniqueness of such solutions.
References:
[1] |
F.-C. Cîrstea and V. Rǎdulescu,
Uniqueness of the blow-up boundary solution of logistic equations with absorbtion, C. R. Math. Acad. Sci. Paris, 335 (2002), 447-452.
doi: 10.1016/S1631-073X(02)02503-7. |
[2] |
D.-P. Covei,
Large and entire large solution for a quasilinear problem, Nonlinear Anal., 70 (2009), 1738-1745.
doi: 10.1016/j.na.2008.02.057. |
[3] |
G. Díaz and R. Letelier,
Explosive solutions of quasilinear elliptic equations: Existence and uniqueness, Nonlinear Anal., 20 (1993), 97-125.
doi: 10.1016/0362-546X(93)90012-H. |
[4] |
Y. Du and Z. Guo,
Boundary blow-up solutions and their applications in quasilinear elliptic equations, J. Anal. Math., 89 (2003), 277-302.
doi: 10.1007/BF02893084. |
[5] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 3$^rd$ ed., Springer-Verlag, Berlin, 1998. |
[6] |
F. Gladiali and G. Porru, Estimates for Explosive Solutions to $p$-Laplace Equations, in: Progress in Partial Differential Equations, Pont-á-Mousson, 1997, vol. 1, in: Pitman Res. Notes Math. Ser., vol. 383, Longman, Harlow, 1998. |
[7] |
S. Huang, Asymptotic behavior of boundary blow-up solutions to elliptic equations, Z. Angew. Math. Phys., 67 (2016), Art. 3, 20 pp.
doi: 10.1007/s00033-015-0606-y. |
[8] |
S. Huang, W.-T. Li, Q. Tian and Y. Mi,
General uniqueness results and blow-up rates for large solutions of elliptic equations, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 825-837.
doi: 10.1017/S0308210511000060. |
[9] |
J. Matero,
Quasilinear elliptic equations with boundary blow-up, J. Anal. Math., 69 (1996), 229-247.
doi: 10.1007/BF02787108. |
[10] |
A. Mohammed,
Existence and asymptotic behavior of blow-up solutions to weighted quasilinear equations, J. Math. Anal. Appl., 298 (2004), 621-637.
doi: 10.1016/j.jmaa.2004.05.030. |
[11] |
A. Mohammed,
Boundary asymptotic and uniqueness of solutions to the $p$-Laplacian with infinite boundary values, J. Math. Anal. Appl., 325 (2007), 480-489.
doi: 10.1016/j.jmaa.2006.02.008. |
[12] |
S. I. Resnick, Extreme Values, Regular Variation, and Point Processes, Springer-Verlag, New York, Berlin, 1987.
doi: 10.1007/978-0-387-75953-1. |
[13] |
E. Seneta, Regular Varying Functions, in: Lecture Notes in Math., vol. 508, Springer-Verlag, 1976.
doi: 10.1007/bfb0079659. |
[14] |
H. Wan, Asymptotic behavior and uniqueness of entire large solutions to a quasilinear elliptic equation, Electron. J. Qual. Theory Differ. Equ., 2017 (2017), Paper No. 30, 17 pp.
doi: 10.14232/ejqtde.2017.1.30. |
[15] |
H. Wan, X. Li, B. Li and Y. Shi,
Entire large solutions to semilinear elliptic equations with rapidly or regularly varying nonlinearities, Nonlinear Anal.: Real World Applications, 45 (2019), 506-530.
doi: 10.1016/j.nonrwa.2018.07.021. |
[16] |
Z. Yang,
Existence of explosive positive solutions of quasilinear elliptic equations, Appl. Math. Comput., 177 (2006), 581-588.
doi: 10.1016/j.amc.2005.09.088. |
[17] |
Z. Zhang,
Boundary behavior of large solutions for semilinear elliptic equations with weights, Asymptot. Anal., 96 (2016), 309-329.
doi: 10.3233/ASY-151345. |
[18] |
Z. Zhang,
Boundary behavior of large solutions to $p$-Laplacian elliptic equations, Nonlinear Anal.: Real World Applications, 33 (2017), 40-57.
doi: 10.1016/j.nonrwa.2016.05.008. |
show all references
References:
[1] |
F.-C. Cîrstea and V. Rǎdulescu,
Uniqueness of the blow-up boundary solution of logistic equations with absorbtion, C. R. Math. Acad. Sci. Paris, 335 (2002), 447-452.
doi: 10.1016/S1631-073X(02)02503-7. |
[2] |
D.-P. Covei,
Large and entire large solution for a quasilinear problem, Nonlinear Anal., 70 (2009), 1738-1745.
doi: 10.1016/j.na.2008.02.057. |
[3] |
G. Díaz and R. Letelier,
Explosive solutions of quasilinear elliptic equations: Existence and uniqueness, Nonlinear Anal., 20 (1993), 97-125.
doi: 10.1016/0362-546X(93)90012-H. |
[4] |
Y. Du and Z. Guo,
Boundary blow-up solutions and their applications in quasilinear elliptic equations, J. Anal. Math., 89 (2003), 277-302.
doi: 10.1007/BF02893084. |
[5] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 3$^rd$ ed., Springer-Verlag, Berlin, 1998. |
[6] |
F. Gladiali and G. Porru, Estimates for Explosive Solutions to $p$-Laplace Equations, in: Progress in Partial Differential Equations, Pont-á-Mousson, 1997, vol. 1, in: Pitman Res. Notes Math. Ser., vol. 383, Longman, Harlow, 1998. |
[7] |
S. Huang, Asymptotic behavior of boundary blow-up solutions to elliptic equations, Z. Angew. Math. Phys., 67 (2016), Art. 3, 20 pp.
doi: 10.1007/s00033-015-0606-y. |
[8] |
S. Huang, W.-T. Li, Q. Tian and Y. Mi,
General uniqueness results and blow-up rates for large solutions of elliptic equations, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 825-837.
doi: 10.1017/S0308210511000060. |
[9] |
J. Matero,
Quasilinear elliptic equations with boundary blow-up, J. Anal. Math., 69 (1996), 229-247.
doi: 10.1007/BF02787108. |
[10] |
A. Mohammed,
Existence and asymptotic behavior of blow-up solutions to weighted quasilinear equations, J. Math. Anal. Appl., 298 (2004), 621-637.
doi: 10.1016/j.jmaa.2004.05.030. |
[11] |
A. Mohammed,
Boundary asymptotic and uniqueness of solutions to the $p$-Laplacian with infinite boundary values, J. Math. Anal. Appl., 325 (2007), 480-489.
doi: 10.1016/j.jmaa.2006.02.008. |
[12] |
S. I. Resnick, Extreme Values, Regular Variation, and Point Processes, Springer-Verlag, New York, Berlin, 1987.
doi: 10.1007/978-0-387-75953-1. |
[13] |
E. Seneta, Regular Varying Functions, in: Lecture Notes in Math., vol. 508, Springer-Verlag, 1976.
doi: 10.1007/bfb0079659. |
[14] |
H. Wan, Asymptotic behavior and uniqueness of entire large solutions to a quasilinear elliptic equation, Electron. J. Qual. Theory Differ. Equ., 2017 (2017), Paper No. 30, 17 pp.
doi: 10.14232/ejqtde.2017.1.30. |
[15] |
H. Wan, X. Li, B. Li and Y. Shi,
Entire large solutions to semilinear elliptic equations with rapidly or regularly varying nonlinearities, Nonlinear Anal.: Real World Applications, 45 (2019), 506-530.
doi: 10.1016/j.nonrwa.2018.07.021. |
[16] |
Z. Yang,
Existence of explosive positive solutions of quasilinear elliptic equations, Appl. Math. Comput., 177 (2006), 581-588.
doi: 10.1016/j.amc.2005.09.088. |
[17] |
Z. Zhang,
Boundary behavior of large solutions for semilinear elliptic equations with weights, Asymptot. Anal., 96 (2016), 309-329.
doi: 10.3233/ASY-151345. |
[18] |
Z. Zhang,
Boundary behavior of large solutions to $p$-Laplacian elliptic equations, Nonlinear Anal.: Real World Applications, 33 (2017), 40-57.
doi: 10.1016/j.nonrwa.2016.05.008. |
[1] |
Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075 |
[2] |
Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021005 |
[3] |
José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091 |
[4] |
Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229 |
[5] |
Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003 |
[6] |
Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020293 |
[7] |
Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020403 |
[8] |
Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318 |
[9] |
Yutong Chen, Jiabao Su. Nontrivial solutions for the fractional Laplacian problems without asymptotic limits near both infinity and zero. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021007 |
[10] |
Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268 |
[11] |
Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293 |
[12] |
Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299 |
[13] |
Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495 |
[14] |
Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045 |
[15] |
Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256 |
[16] |
Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242 |
[17] |
Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262 |
[18] |
Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021007 |
[19] |
Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020320 |
[20] |
Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020445 |
Impact Factor: 0.263
Tools
Metrics
Other articles
by authors
[Back to Top]