doi: 10.3934/era.2020119

Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case

School of Mathematics and Information Science, Shandong Technology and Business University, Yantai 264005, China

* Corresponding author: Haitao Wan

Received  August 2020 Revised  October 2020 Published  November 2020

This paper is considered with the quasilinear elliptic equation $ \Delta_{p}u = b(x)f(u),\,u(x)>0,\,x\in\Omega, $ where $ \Omega $ is an exterior domain with compact smooth boundary, $ b\in \rm C(\Omega) $ is non-negative in $ \Omega $ and may be singular or vanish on $ \partial\Omega $, $ f\in C[0, \infty) $ is positive and increasing on $ (0, \infty) $ which satisfies a generalized Keller-Osserman condition and is regularly varying at infinity with critical index $ p-1 $. By structuring a new comparison function, we establish the new asymptotic behavior of large solutions to the above equation in the exterior domain. We find that the lower term of $ f $ has an important influence on the asymptotic behavior of large solutions. And then we further establish the uniqueness of such solutions.

Citation: Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, doi: 10.3934/era.2020119
References:
[1]

F.-C. Cîrstea and V. Rǎdulescu, Uniqueness of the blow-up boundary solution of logistic equations with absorbtion, C. R. Math. Acad. Sci. Paris, 335 (2002), 447-452.  doi: 10.1016/S1631-073X(02)02503-7.  Google Scholar

[2]

D.-P. Covei, Large and entire large solution for a quasilinear problem, Nonlinear Anal., 70 (2009), 1738-1745.  doi: 10.1016/j.na.2008.02.057.  Google Scholar

[3]

G. Díaz and R. Letelier, Explosive solutions of quasilinear elliptic equations: Existence and uniqueness, Nonlinear Anal., 20 (1993), 97-125.  doi: 10.1016/0362-546X(93)90012-H.  Google Scholar

[4]

Y. Du and Z. Guo, Boundary blow-up solutions and their applications in quasilinear elliptic equations, J. Anal. Math., 89 (2003), 277-302.  doi: 10.1007/BF02893084.  Google Scholar

[5]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 3$^rd$ ed., Springer-Verlag, Berlin, 1998.  Google Scholar

[6]

F. Gladiali and G. Porru, Estimates for Explosive Solutions to $p$-Laplace Equations, in: Progress in Partial Differential Equations, Pont-á-Mousson, 1997, vol. 1, in: Pitman Res. Notes Math. Ser., vol. 383, Longman, Harlow, 1998.  Google Scholar

[7]

S. Huang, Asymptotic behavior of boundary blow-up solutions to elliptic equations, Z. Angew. Math. Phys., 67 (2016), Art. 3, 20 pp. doi: 10.1007/s00033-015-0606-y.  Google Scholar

[8]

S. HuangW.-T. LiQ. Tian and Y. Mi, General uniqueness results and blow-up rates for large solutions of elliptic equations, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 825-837.  doi: 10.1017/S0308210511000060.  Google Scholar

[9]

J. Matero, Quasilinear elliptic equations with boundary blow-up, J. Anal. Math., 69 (1996), 229-247.  doi: 10.1007/BF02787108.  Google Scholar

[10]

A. Mohammed, Existence and asymptotic behavior of blow-up solutions to weighted quasilinear equations, J. Math. Anal. Appl., 298 (2004), 621-637.  doi: 10.1016/j.jmaa.2004.05.030.  Google Scholar

[11]

A. Mohammed, Boundary asymptotic and uniqueness of solutions to the $p$-Laplacian with infinite boundary values, J. Math. Anal. Appl., 325 (2007), 480-489.  doi: 10.1016/j.jmaa.2006.02.008.  Google Scholar

[12]

S. I. Resnick, Extreme Values, Regular Variation, and Point Processes, Springer-Verlag, New York, Berlin, 1987. doi: 10.1007/978-0-387-75953-1.  Google Scholar

[13]

E. Seneta, Regular Varying Functions, in: Lecture Notes in Math., vol. 508, Springer-Verlag, 1976. doi: 10.1007/bfb0079659.  Google Scholar

[14]

H. Wan, Asymptotic behavior and uniqueness of entire large solutions to a quasilinear elliptic equation, Electron. J. Qual. Theory Differ. Equ., 2017 (2017), Paper No. 30, 17 pp. doi: 10.14232/ejqtde.2017.1.30.  Google Scholar

[15]

H. WanX. LiB. Li and Y. Shi, Entire large solutions to semilinear elliptic equations with rapidly or regularly varying nonlinearities, Nonlinear Anal.: Real World Applications, 45 (2019), 506-530.  doi: 10.1016/j.nonrwa.2018.07.021.  Google Scholar

[16]

Z. Yang, Existence of explosive positive solutions of quasilinear elliptic equations, Appl. Math. Comput., 177 (2006), 581-588.  doi: 10.1016/j.amc.2005.09.088.  Google Scholar

[17]

Z. Zhang, Boundary behavior of large solutions for semilinear elliptic equations with weights, Asymptot. Anal., 96 (2016), 309-329.  doi: 10.3233/ASY-151345.  Google Scholar

[18]

Z. Zhang, Boundary behavior of large solutions to $p$-Laplacian elliptic equations, Nonlinear Anal.: Real World Applications, 33 (2017), 40-57.  doi: 10.1016/j.nonrwa.2016.05.008.  Google Scholar

show all references

References:
[1]

F.-C. Cîrstea and V. Rǎdulescu, Uniqueness of the blow-up boundary solution of logistic equations with absorbtion, C. R. Math. Acad. Sci. Paris, 335 (2002), 447-452.  doi: 10.1016/S1631-073X(02)02503-7.  Google Scholar

[2]

D.-P. Covei, Large and entire large solution for a quasilinear problem, Nonlinear Anal., 70 (2009), 1738-1745.  doi: 10.1016/j.na.2008.02.057.  Google Scholar

[3]

G. Díaz and R. Letelier, Explosive solutions of quasilinear elliptic equations: Existence and uniqueness, Nonlinear Anal., 20 (1993), 97-125.  doi: 10.1016/0362-546X(93)90012-H.  Google Scholar

[4]

Y. Du and Z. Guo, Boundary blow-up solutions and their applications in quasilinear elliptic equations, J. Anal. Math., 89 (2003), 277-302.  doi: 10.1007/BF02893084.  Google Scholar

[5]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 3$^rd$ ed., Springer-Verlag, Berlin, 1998.  Google Scholar

[6]

F. Gladiali and G. Porru, Estimates for Explosive Solutions to $p$-Laplace Equations, in: Progress in Partial Differential Equations, Pont-á-Mousson, 1997, vol. 1, in: Pitman Res. Notes Math. Ser., vol. 383, Longman, Harlow, 1998.  Google Scholar

[7]

S. Huang, Asymptotic behavior of boundary blow-up solutions to elliptic equations, Z. Angew. Math. Phys., 67 (2016), Art. 3, 20 pp. doi: 10.1007/s00033-015-0606-y.  Google Scholar

[8]

S. HuangW.-T. LiQ. Tian and Y. Mi, General uniqueness results and blow-up rates for large solutions of elliptic equations, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 825-837.  doi: 10.1017/S0308210511000060.  Google Scholar

[9]

J. Matero, Quasilinear elliptic equations with boundary blow-up, J. Anal. Math., 69 (1996), 229-247.  doi: 10.1007/BF02787108.  Google Scholar

[10]

A. Mohammed, Existence and asymptotic behavior of blow-up solutions to weighted quasilinear equations, J. Math. Anal. Appl., 298 (2004), 621-637.  doi: 10.1016/j.jmaa.2004.05.030.  Google Scholar

[11]

A. Mohammed, Boundary asymptotic and uniqueness of solutions to the $p$-Laplacian with infinite boundary values, J. Math. Anal. Appl., 325 (2007), 480-489.  doi: 10.1016/j.jmaa.2006.02.008.  Google Scholar

[12]

S. I. Resnick, Extreme Values, Regular Variation, and Point Processes, Springer-Verlag, New York, Berlin, 1987. doi: 10.1007/978-0-387-75953-1.  Google Scholar

[13]

E. Seneta, Regular Varying Functions, in: Lecture Notes in Math., vol. 508, Springer-Verlag, 1976. doi: 10.1007/bfb0079659.  Google Scholar

[14]

H. Wan, Asymptotic behavior and uniqueness of entire large solutions to a quasilinear elliptic equation, Electron. J. Qual. Theory Differ. Equ., 2017 (2017), Paper No. 30, 17 pp. doi: 10.14232/ejqtde.2017.1.30.  Google Scholar

[15]

H. WanX. LiB. Li and Y. Shi, Entire large solutions to semilinear elliptic equations with rapidly or regularly varying nonlinearities, Nonlinear Anal.: Real World Applications, 45 (2019), 506-530.  doi: 10.1016/j.nonrwa.2018.07.021.  Google Scholar

[16]

Z. Yang, Existence of explosive positive solutions of quasilinear elliptic equations, Appl. Math. Comput., 177 (2006), 581-588.  doi: 10.1016/j.amc.2005.09.088.  Google Scholar

[17]

Z. Zhang, Boundary behavior of large solutions for semilinear elliptic equations with weights, Asymptot. Anal., 96 (2016), 309-329.  doi: 10.3233/ASY-151345.  Google Scholar

[18]

Z. Zhang, Boundary behavior of large solutions to $p$-Laplacian elliptic equations, Nonlinear Anal.: Real World Applications, 33 (2017), 40-57.  doi: 10.1016/j.nonrwa.2016.05.008.  Google Scholar

[1]

Meiqiang Feng, Yichen Zhang. Positive solutions of singular multiparameter p-Laplacian elliptic systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021083

[2]

Shuang Wang, Dingbian Qian. Periodic solutions of p-Laplacian equations via rotation numbers. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021060

[3]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[4]

Peng Chen, Xiaochun Liu. Positive solutions for Choquard equation in exterior domains. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021065

[5]

Alfonso Castro, Jorge Cossio, Sigifredo Herrón, Carlos Vélez. Infinitely many radial solutions for a $ p $-Laplacian problem with indefinite weight. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021058

[6]

Said Taarabti. Positive solutions for the $ p(x)- $Laplacian : Application of the Nehari method. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021029

[7]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3211-3240. doi: 10.3934/dcds.2020403

[8]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, 2021, 20 (3) : 995-1023. doi: 10.3934/cpaa.2021003

[9]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091

[10]

Pengyu Chen, Xuping Zhang, Zhitao Zhang. Asymptotic behavior of time periodic solutions for extended Fisher-Kolmogorov equations with delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021103

[11]

Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029

[12]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[13]

Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017

[14]

Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195

[15]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[16]

Amira Khelifa, Yacine Halim. Global behavior of P-dimensional difference equations system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021029

[17]

Xuping Zhang. Pullback random attractors for fractional stochastic $ p $-Laplacian equation with delay and multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021107

[18]

Anhui Gu. Weak pullback mean random attractors for non-autonomous $ p $-Laplacian equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3863-3878. doi: 10.3934/dcdsb.2020266

[19]

Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3555-3577. doi: 10.3934/dcds.2021007

[20]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

 Impact Factor: 0.263

Article outline

[Back to Top]