• Previous Article
    On recent progress of single-realization recoveries of random Schrödinger systems
  • ERA Home
  • This Issue
  • Next Article
    Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case
August  2021, 29(3): 2375-2389. doi: 10.3934/era.2020120

A conforming discontinuous Galerkin finite element method on rectangular partitions

1. 

Department of Mathematics, Jilin University, Changchun, China

2. 

Artificial Intelligence Research Center, Peng Cheng Laboratory, Shenzhen 518005, China

3. 

Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA

* Corresponding author: Ruishu Wang

Received  December 2019 Revised  September 2020 Published  August 2021 Early access  November 2020

Fund Project: The research of the first author was supported in part by China Natural National Science Foundation (91630201, U1530116, 11726102, 11771179, 93K172018Z01, 11701210, JJKH20180113KJ, 20190103029JH), and by the Program for Cheung Kong Scholars of Ministry of Education of China, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China.
The research of Liu was partially supported by China Natural National Science Foundation (No. 12001306), Guangdong Provincial Natural Science Foundation (No. 2017A030310285).
The research of Wang was partially supported by China Natural National Science Foundation (No. 12001230), Postdoctoral Research Fund (No. 2019M661199, BX20190142)

This article presents a conforming discontinuous Galerkin (conforming DG) scheme for second order elliptic equations on rectangular partitions. The new method is based on DG finite element space and uses a weak gradient arising from local Raviart Thomas space for gradient approximations. By using the weak gradient and enforcing inter-element continuity strongly, the scheme maintains the simple formulation of conforming finite element method while have the flexibility of using discontinuous approximations. Hence, the programming complexity of this new conforming DG scheme is significantly reduced compared to other existing DG methods. Error estimates of optimal order are established for the corresponding conforming DG approximations in various discrete Sobolev norms. Numerical results are presented to confirm the developed convergence theory.

Citation: Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, 2021, 29 (3) : 2375-2389. doi: 10.3934/era.2020120
References:
[1]

D. N. ArnoldF. BrezziB. Cockburn and L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39 (2001/02), 1749-1779.  doi: 10.1137/S0036142901384162.  Google Scholar

[2]

I. Babuška, The finite element method with penalty, Math. Comp., 27 (1973), 221-228.  doi: 10.1090/S0025-5718-1973-0351118-5.  Google Scholar

[3]

G. A. Baker, Finite element methods for elliptic equations using nonconforming elements, Math. Comp., 31 (1977), 45-59.  doi: 10.1090/S0025-5718-1977-0431742-5.  Google Scholar

[4]

L. Beirão da VeigaF. BrezziA. CangianiG. ManziniL. D. Marini and A. Russo, Basic principles of virtual element methods, Math. Models Methods Appl. Sci., 23 (2013), 199-214.  doi: 10.1142/S0218202512500492.  Google Scholar

[5]

F. Brezzi, On the existence, uniqueness, and approximation of saddle point problems arising from Lagrangian multipliers, RAIRO, 8 (1974), 129-151.   Google Scholar

[6]

P. Chatzipantelidis, A finite volume method based on the Crouzeix-Raviart element for elliptic PDE's in two dimensions, Numer. Math., 82 (1999), 409-432.  doi: 10.1007/s002110050425.  Google Scholar

[7]

G. ChenW. HuJ. ShenJ. R. SinglerY. Zhang and X. Zheng, An HDG method for distributed control of convection diffusion PDEs, J. Comput. Appl. Math., 343 (2018), 643-661.  doi: 10.1016/j.cam.2018.05.028.  Google Scholar

[8]

X. Feng and T. Lewis, Local discontinuous Galerkin methods for one-dimensional second order fully nonlinear elliptic and parabolic equations, J. Sci. Comput., 59 (2014), 129-157.  doi: 10.1007/s10915-013-9763-3.  Google Scholar

[9]

X. FengM. Neilan and S. Schenake, Interior penalty discontinuous Galerkin methods for second order linear non-divergence form elliptic PDEs, J. Sci. Comput., 74 (2018), 1651-1676.  doi: 10.1007/s10915-017-0519-3.  Google Scholar

[10]

K. LipnikovG. ManziniF. Brezzi and A. Buffa, The mimetic finite difference method for the 3D magnetostatic field problems on polyhedral meshes, J. Comput. Phys., 230 (2011), 305-328.  doi: 10.1016/j.jcp.2010.09.007.  Google Scholar

[11]

Y. Liu and J. Wang, Simplified weak Galerkin and new finite difference schemes for the Stokes equation, J. Comput. Appl. Math., 361 (2019), 176-206.  doi: 10.1016/j.cam.2019.04.024.  Google Scholar

[12]

Y. Liu and J. Wang, A locking-free $ P_0 $ finite element method for linear elasticity equations on polytopal partitions, preprint, arXiv: 1911.08728, 2019. Google Scholar

[13]

L. Mu, J. Wang, Y. Wang and X. Ye, A weak Galerkin mixed finite element method for biharmonic equations, Numerical Solution of Partial Differential Equations: Theory, Algorithms, and their Applications, in: Springer Proceedings in Mathematics and Statistics, 45 (2013), 247-277. doi: 10.1007/978-1-4614-7172-1_13.  Google Scholar

[14]

L. MuJ. WangX. Ye and S. Zhang, A $C^0$-weak Galerkin finite element method for the biharmonic equation, J. Sci. Comput., 59 (2014), 473-495.  doi: 10.1007/s10915-013-9770-4.  Google Scholar

[15]

P.-A. Raviart and J. M. Thomas, A Mixed Finite Element Method for Second Order Elliptic Problems, in: I. Galligani, E. Magenes (Eds.), Mathematical Aspects of the Finite Element Method, in: Lecture Notes in Math., vol. 606, Springer-Verlag, New York, 1977. Technical Report LA-UR-73-0479, Los Alamos Scientific Laboratory, Los Alamos, NM, 1973.  Google Scholar

[16]

M. Stynes, Sharp anisotropic interpolation error estimates for rectangular Raviart-Thomas elements, Math. Comp., 83 (2014), 2675-2689. doi: 10.1090/S0025-5718-2014-02826-3.  Google Scholar

[17]

C. WangJ. WangR. Wang and R. Zhang, A locking-free weak Galerkin finite element method for elasticity problems in the primal formulation, J. Comput. Appl. Math., 307 (2016), 346-366.  doi: 10.1016/j.cam.2015.12.015.  Google Scholar

[18]

R. WangX. WangQ. Zhai and R. Zhang, A weak Galerkin finite element scheme for solving the stationary Stokes equations, J. Comput. Appl. Math., 302 (2016), 171-185.  doi: 10.1016/j.cam.2016.01.025.  Google Scholar

[19]

J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.  doi: 10.1016/j.cam.2012.10.003.  Google Scholar

[20]

J. Wang and X. Ye, A Weak Galerkin mixed finite element method for second-order elliptic problems, Math. Comp., 83 (2014), 2101-2126.  doi: 10.1090/S0025-5718-2014-02852-4.  Google Scholar

[21]

X. Ye and S. Zhang, A conforming discontinuous Galerkin finite element method, Int. J. Numer. Anal. and Model., 17 (2020), 110-117. arXiv: 1904.03331.  Google Scholar

[22]

X. Ye and S. Zhang, A conforming discontinuous Galerkin finite element method: Part Ⅱ, arXiv: 1907.01397. Google Scholar

[23]

H. ZhangY. ZouY. XuQ. Zhai and H. Yue, Weak Galerkin finite element method for second order parabolic equations, Int. J. Numer. Anal. Model., 13 (2016), 525-544.   Google Scholar

show all references

References:
[1]

D. N. ArnoldF. BrezziB. Cockburn and L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39 (2001/02), 1749-1779.  doi: 10.1137/S0036142901384162.  Google Scholar

[2]

I. Babuška, The finite element method with penalty, Math. Comp., 27 (1973), 221-228.  doi: 10.1090/S0025-5718-1973-0351118-5.  Google Scholar

[3]

G. A. Baker, Finite element methods for elliptic equations using nonconforming elements, Math. Comp., 31 (1977), 45-59.  doi: 10.1090/S0025-5718-1977-0431742-5.  Google Scholar

[4]

L. Beirão da VeigaF. BrezziA. CangianiG. ManziniL. D. Marini and A. Russo, Basic principles of virtual element methods, Math. Models Methods Appl. Sci., 23 (2013), 199-214.  doi: 10.1142/S0218202512500492.  Google Scholar

[5]

F. Brezzi, On the existence, uniqueness, and approximation of saddle point problems arising from Lagrangian multipliers, RAIRO, 8 (1974), 129-151.   Google Scholar

[6]

P. Chatzipantelidis, A finite volume method based on the Crouzeix-Raviart element for elliptic PDE's in two dimensions, Numer. Math., 82 (1999), 409-432.  doi: 10.1007/s002110050425.  Google Scholar

[7]

G. ChenW. HuJ. ShenJ. R. SinglerY. Zhang and X. Zheng, An HDG method for distributed control of convection diffusion PDEs, J. Comput. Appl. Math., 343 (2018), 643-661.  doi: 10.1016/j.cam.2018.05.028.  Google Scholar

[8]

X. Feng and T. Lewis, Local discontinuous Galerkin methods for one-dimensional second order fully nonlinear elliptic and parabolic equations, J. Sci. Comput., 59 (2014), 129-157.  doi: 10.1007/s10915-013-9763-3.  Google Scholar

[9]

X. FengM. Neilan and S. Schenake, Interior penalty discontinuous Galerkin methods for second order linear non-divergence form elliptic PDEs, J. Sci. Comput., 74 (2018), 1651-1676.  doi: 10.1007/s10915-017-0519-3.  Google Scholar

[10]

K. LipnikovG. ManziniF. Brezzi and A. Buffa, The mimetic finite difference method for the 3D magnetostatic field problems on polyhedral meshes, J. Comput. Phys., 230 (2011), 305-328.  doi: 10.1016/j.jcp.2010.09.007.  Google Scholar

[11]

Y. Liu and J. Wang, Simplified weak Galerkin and new finite difference schemes for the Stokes equation, J. Comput. Appl. Math., 361 (2019), 176-206.  doi: 10.1016/j.cam.2019.04.024.  Google Scholar

[12]

Y. Liu and J. Wang, A locking-free $ P_0 $ finite element method for linear elasticity equations on polytopal partitions, preprint, arXiv: 1911.08728, 2019. Google Scholar

[13]

L. Mu, J. Wang, Y. Wang and X. Ye, A weak Galerkin mixed finite element method for biharmonic equations, Numerical Solution of Partial Differential Equations: Theory, Algorithms, and their Applications, in: Springer Proceedings in Mathematics and Statistics, 45 (2013), 247-277. doi: 10.1007/978-1-4614-7172-1_13.  Google Scholar

[14]

L. MuJ. WangX. Ye and S. Zhang, A $C^0$-weak Galerkin finite element method for the biharmonic equation, J. Sci. Comput., 59 (2014), 473-495.  doi: 10.1007/s10915-013-9770-4.  Google Scholar

[15]

P.-A. Raviart and J. M. Thomas, A Mixed Finite Element Method for Second Order Elliptic Problems, in: I. Galligani, E. Magenes (Eds.), Mathematical Aspects of the Finite Element Method, in: Lecture Notes in Math., vol. 606, Springer-Verlag, New York, 1977. Technical Report LA-UR-73-0479, Los Alamos Scientific Laboratory, Los Alamos, NM, 1973.  Google Scholar

[16]

M. Stynes, Sharp anisotropic interpolation error estimates for rectangular Raviart-Thomas elements, Math. Comp., 83 (2014), 2675-2689. doi: 10.1090/S0025-5718-2014-02826-3.  Google Scholar

[17]

C. WangJ. WangR. Wang and R. Zhang, A locking-free weak Galerkin finite element method for elasticity problems in the primal formulation, J. Comput. Appl. Math., 307 (2016), 346-366.  doi: 10.1016/j.cam.2015.12.015.  Google Scholar

[18]

R. WangX. WangQ. Zhai and R. Zhang, A weak Galerkin finite element scheme for solving the stationary Stokes equations, J. Comput. Appl. Math., 302 (2016), 171-185.  doi: 10.1016/j.cam.2016.01.025.  Google Scholar

[19]

J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.  doi: 10.1016/j.cam.2012.10.003.  Google Scholar

[20]

J. Wang and X. Ye, A Weak Galerkin mixed finite element method for second-order elliptic problems, Math. Comp., 83 (2014), 2101-2126.  doi: 10.1090/S0025-5718-2014-02852-4.  Google Scholar

[21]

X. Ye and S. Zhang, A conforming discontinuous Galerkin finite element method, Int. J. Numer. Anal. and Model., 17 (2020), 110-117. arXiv: 1904.03331.  Google Scholar

[22]

X. Ye and S. Zhang, A conforming discontinuous Galerkin finite element method: Part Ⅱ, arXiv: 1907.01397. Google Scholar

[23]

H. ZhangY. ZouY. XuQ. Zhai and H. Yue, Weak Galerkin finite element method for second order parabolic equations, Int. J. Numer. Anal. Model., 13 (2016), 525-544.   Google Scholar

Figure 1.  The first three grids used in the computation
Table 1.  Error profiles and convergence rates for test case (44)-(45) obtained with uniform grids and $ P_k $ conforming DG spaces
level $ \|u_h- Q_h u\|_0 $ rate $ {|\!|\!|} u_h- Q_h u{|\!|\!|} $ rate $ \#Dof $
by $ P_0 $ conforming discontinuous Galerkin elements
6 0.1996E-02 1.97 0.8887E-02 1.98 1024
7 0.5013E-03 1.99 0.2228E-02 2.00 4096
8 0.1255E-03 2.00 0.5574E-03 2.00 16384
by $ P_1 $ conforming discontinuous Galerkin elements
6 0.2427E-02 1.97 0.1027E+00 1.02 3072
7 0.6100E-03 1.99 0.5105E-01 1.01 12288
8 0.1527E-03 2.00 0.2546E-01 1.00 49152
by $ P_2 $ conforming discontinuous Galerkin elements
5 0.1533E-03 3.00 0.2042E-01 2.03 1536
6 0.1915E-04 3.00 0.5061E-02 2.01 6144
7 0.2394E-05 3.00 0.1260E-02 2.01 24576
by $ P_3 $ conforming discontinuous Galerkin elements
5 0.7959E-05 4.00 0.1965E-02 3.00 2560
6 0.4971E-06 4.00 0.2451E-03 3.00 10240
7 0.3140E-07 3.98 0.3059E-04 3.00 40960
by $ P_4 $ conforming discontinuous Galerkin elements
4 0.1055E-04 4.97 0.1421E-02 4.05 960
5 0.3314E-06 4.99 0.8735E-04 4.02 3840
6 0.1057E-07 4.97 0.5417E-05 4.01 15360
by $ P_5 $ conforming discontinuous Galerkin elements
2 0.2835E-02 6.24 0.1450E+00 5.49 84
3 0.4532E-04 5.97 0.4718E-02 4.94 336
4 0.7115E-06 5.99 0.1478E-03 5.00 1344
level $ \|u_h- Q_h u\|_0 $ rate $ {|\!|\!|} u_h- Q_h u{|\!|\!|} $ rate $ \#Dof $
by $ P_0 $ conforming discontinuous Galerkin elements
6 0.1996E-02 1.97 0.8887E-02 1.98 1024
7 0.5013E-03 1.99 0.2228E-02 2.00 4096
8 0.1255E-03 2.00 0.5574E-03 2.00 16384
by $ P_1 $ conforming discontinuous Galerkin elements
6 0.2427E-02 1.97 0.1027E+00 1.02 3072
7 0.6100E-03 1.99 0.5105E-01 1.01 12288
8 0.1527E-03 2.00 0.2546E-01 1.00 49152
by $ P_2 $ conforming discontinuous Galerkin elements
5 0.1533E-03 3.00 0.2042E-01 2.03 1536
6 0.1915E-04 3.00 0.5061E-02 2.01 6144
7 0.2394E-05 3.00 0.1260E-02 2.01 24576
by $ P_3 $ conforming discontinuous Galerkin elements
5 0.7959E-05 4.00 0.1965E-02 3.00 2560
6 0.4971E-06 4.00 0.2451E-03 3.00 10240
7 0.3140E-07 3.98 0.3059E-04 3.00 40960
by $ P_4 $ conforming discontinuous Galerkin elements
4 0.1055E-04 4.97 0.1421E-02 4.05 960
5 0.3314E-06 4.99 0.8735E-04 4.02 3840
6 0.1057E-07 4.97 0.5417E-05 4.01 15360
by $ P_5 $ conforming discontinuous Galerkin elements
2 0.2835E-02 6.24 0.1450E+00 5.49 84
3 0.4532E-04 5.97 0.4718E-02 4.94 336
4 0.7115E-06 5.99 0.1478E-03 5.00 1344
Table 2.  Error profiles and convergence rates for test case (44)-(45) obtained with uniform grids and $ Q_k $ conforming DG spaces
level $ \|u_h- Q_hu\|_0 $ rate $ {|\!|\!|} u_h- Q_h u{|\!|\!|} $ rate $ \#Dof $
by $ Q_1 $ conforming discontinuous Galerkin elements
6 0.4006E-03 1.99 0.2389E-02 1.99 4096
7 0.1003E-03 2.00 0.5982E-03 2.00 16384
8 0.2510E-04 2.00 0.1496E-03 2.00 65536
by $ Q_2 $ conforming discontinuous Galerkin elements
6 0.2360E-04 2.99 0.3186E-02 1.99 9216
7 0.2953E-05 3.00 0.7976E-03 2.00 36864
8 0.3692E-06 3.00 0.1995E-03 2.00 147456
by $ Q_3 $ conforming discontinuous Galerkin elements
5 0.1413E-04 4.08 0.1650E-02 2.97 4096
6 0.8676E-06 4.03 0.2072E-03 2.99 16384
7 0.5398E-07 4.01 0.2593E-04 3.00 65536
by $ Q_4 $ conforming discontinuous Galerkin elements
3 0.2226E-02 4.59 0.5414E-01 3.52 400
4 0.9610E-04 4.53 0.3723E-02 3.86 1600
5 0.3279E-05 4.87 0.2392E-03 3.96 6400
level $ \|u_h- Q_hu\|_0 $ rate $ {|\!|\!|} u_h- Q_h u{|\!|\!|} $ rate $ \#Dof $
by $ Q_1 $ conforming discontinuous Galerkin elements
6 0.4006E-03 1.99 0.2389E-02 1.99 4096
7 0.1003E-03 2.00 0.5982E-03 2.00 16384
8 0.2510E-04 2.00 0.1496E-03 2.00 65536
by $ Q_2 $ conforming discontinuous Galerkin elements
6 0.2360E-04 2.99 0.3186E-02 1.99 9216
7 0.2953E-05 3.00 0.7976E-03 2.00 36864
8 0.3692E-06 3.00 0.1995E-03 2.00 147456
by $ Q_3 $ conforming discontinuous Galerkin elements
5 0.1413E-04 4.08 0.1650E-02 2.97 4096
6 0.8676E-06 4.03 0.2072E-03 2.99 16384
7 0.5398E-07 4.01 0.2593E-04 3.00 65536
by $ Q_4 $ conforming discontinuous Galerkin elements
3 0.2226E-02 4.59 0.5414E-01 3.52 400
4 0.9610E-04 4.53 0.3723E-02 3.86 1600
5 0.3279E-05 4.87 0.2392E-03 3.96 6400
Table 3.  Error profiles and convergence rates for test case (46) obtained with uniform grids and $ P_0 $ conforming DG spaces
level $ \|u_h- Q_h u\|_0 $ rate $ {|\!|\!|} u_h- Q_h u{|\!|\!|} $ rate $ \#Dof $
by $ P_0 $ conforming discontinuous Galerkin elements
3 0.8265E-02 1.06 0.4577E-01 1.14 16
4 0.2772E-02 1.58 0.1732E-01 1.40 64
5 0.7965E-03 1.80 0.6331E-02 1.45 256
6 0.2142E-03 1.90 0.2290E-02 1.47 1024
7 0.5564E-04 1.94 0.8213E-03 1.48 4096
8 0.1419E-04 1.97 0.2928E-03 1.49 16384
level $ \|u_h- Q_h u\|_0 $ rate $ {|\!|\!|} u_h- Q_h u{|\!|\!|} $ rate $ \#Dof $
by $ P_0 $ conforming discontinuous Galerkin elements
3 0.8265E-02 1.06 0.4577E-01 1.14 16
4 0.2772E-02 1.58 0.1732E-01 1.40 64
5 0.7965E-03 1.80 0.6331E-02 1.45 256
6 0.2142E-03 1.90 0.2290E-02 1.47 1024
7 0.5564E-04 1.94 0.8213E-03 1.48 4096
8 0.1419E-04 1.97 0.2928E-03 1.49 16384
Table 4.  Error profiles and convergence rates for test case (47) obtained with uniform grids and $ P_0 $ conforming DG spaces
level $ \|u_h- Q_h u\|_0 $ rate $ {|\!|\!|} u_h- Q_h u{|\!|\!|} $ rate $ \#Dof $
by $ P_0 $ conforming discontinuous Galerkin elements
3 0.4929E-02 0.97 0.5371E-01 0.80 16
4 0.1917E-02 1.36 0.2401E-01 1.16 64
5 0.6004E-03 1.67 0.9407E-02 1.35 256
6 0.1682E-03 1.84 0.3507E-02 1.42 1024
7 0.4457E-04 1.92 0.1275E-02 1.46 4096
8 0.1148E-04 1.96 0.4576E-03 1.48 16384
level $ \|u_h- Q_h u\|_0 $ rate $ {|\!|\!|} u_h- Q_h u{|\!|\!|} $ rate $ \#Dof $
by $ P_0 $ conforming discontinuous Galerkin elements
3 0.4929E-02 0.97 0.5371E-01 0.80 16
4 0.1917E-02 1.36 0.2401E-01 1.16 64
5 0.6004E-03 1.67 0.9407E-02 1.35 256
6 0.1682E-03 1.84 0.3507E-02 1.42 1024
7 0.4457E-04 1.92 0.1275E-02 1.46 4096
8 0.1148E-04 1.96 0.4576E-03 1.48 16384
[1]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[2]

Guanrong Li, Yanping Chen, Yunqing Huang. A hybridized weak Galerkin finite element scheme for general second-order elliptic problems. Electronic Research Archive, 2020, 28 (2) : 821-836. doi: 10.3934/era.2020042

[3]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2021, 26 (10) : 5217-5226. doi: 10.3934/dcdsb.2020340

[4]

Chaoxu Pei, Mark Sussman, M. Yousuff Hussaini. A space-time discontinuous Galerkin spectral element method for the Stefan problem. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3595-3622. doi: 10.3934/dcdsb.2017216

[5]

Lijuan Wang, Jun Zou. Error estimates of finite element methods for parameter identifications in elliptic and parabolic systems. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1641-1670. doi: 10.3934/dcdsb.2010.14.1641

[6]

Runchang Lin, Huiqing Zhu. A discontinuous Galerkin least-squares finite element method for solving Fisher's equation. Conference Publications, 2013, 2013 (special) : 489-497. doi: 10.3934/proc.2013.2013.489

[7]

Konstantinos Chrysafinos, Efthimios N. Karatzas. Symmetric error estimates for discontinuous Galerkin approximations for an optimal control problem associated to semilinear parabolic PDE's. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1473-1506. doi: 10.3934/dcdsb.2012.17.1473

[8]

Dominik Hafemeyer, Florian Mannel, Ira Neitzel, Boris Vexler. Finite element error estimates for one-dimensional elliptic optimal control by BV-functions. Mathematical Control & Related Fields, 2020, 10 (2) : 333-363. doi: 10.3934/mcrf.2019041

[9]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[10]

Derrick Jones, Xu Zhang. A conforming-nonconforming mixed immersed finite element method for unsteady Stokes equations with moving interfaces. Electronic Research Archive, , () : -. doi: 10.3934/era.2021032

[11]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[12]

Jie Shen, Xiaofeng Yang. Error estimates for finite element approximations of consistent splitting schemes for incompressible flows. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 663-676. doi: 10.3934/dcdsb.2007.8.663

[13]

Wolf-Jüergen Beyn, Janosch Rieger. Galerkin finite element methods for semilinear elliptic differential inclusions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 295-312. doi: 10.3934/dcdsb.2013.18.295

[14]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021, 11 (3) : 601-624. doi: 10.3934/mcrf.2021014

[15]

Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768

[16]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[17]

Kim S. Bey, Peter Z. Daffer, Hideaki Kaneko, Puntip Toghaw. Error analysis of the p-version discontinuous Galerkin method for heat transfer in built-up structures. Communications on Pure & Applied Analysis, 2007, 6 (3) : 719-740. doi: 10.3934/cpaa.2007.6.719

[18]

Na An, Chaobao Huang, Xijun Yu. Error analysis of discontinuous Galerkin method for the time fractional KdV equation with weak singularity solution. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 321-334. doi: 10.3934/dcdsb.2019185

[19]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[20]

Yingwen Guo, Yinnian He. Fully discrete finite element method based on second-order Crank-Nicolson/Adams-Bashforth scheme for the equations of motion of Oldroyd fluids of order one. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2583-2609. doi: 10.3934/dcdsb.2015.20.2583

2020 Impact Factor: 1.833

Metrics

  • PDF downloads (130)
  • HTML views (289)
  • Cited by (1)

Other articles
by authors

[Back to Top]