
-
Previous Article
Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity
- ERA Home
- This Issue
-
Next Article
Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM
A conforming discontinuous Galerkin finite element method on rectangular partitions
1. | Department of Mathematics, Jilin University, Changchun, China |
2. | Artificial Intelligence Research Center, Peng Cheng Laboratory, Shenzhen 518005, China |
3. | Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA |
This article presents a conforming discontinuous Galerkin (conforming DG) scheme for second order elliptic equations on rectangular partitions. The new method is based on DG finite element space and uses a weak gradient arising from local Raviart Thomas space for gradient approximations. By using the weak gradient and enforcing inter-element continuity strongly, the scheme maintains the simple formulation of conforming finite element method while have the flexibility of using discontinuous approximations. Hence, the programming complexity of this new conforming DG scheme is significantly reduced compared to other existing DG methods. Error estimates of optimal order are established for the corresponding conforming DG approximations in various discrete Sobolev norms. Numerical results are presented to confirm the developed convergence theory.
References:
[1] |
D. N. Arnold, F. Brezzi, B. Cockburn and L. D. Marini,
Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39 (2001/02), 1749-1779.
doi: 10.1137/S0036142901384162. |
[2] |
I. Babuška,
The finite element method with penalty, Math. Comp., 27 (1973), 221-228.
doi: 10.1090/S0025-5718-1973-0351118-5. |
[3] |
G. A. Baker,
Finite element methods for elliptic equations using nonconforming elements, Math. Comp., 31 (1977), 45-59.
doi: 10.1090/S0025-5718-1977-0431742-5. |
[4] |
L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo,
Basic principles of virtual element methods, Math. Models Methods Appl. Sci., 23 (2013), 199-214.
doi: 10.1142/S0218202512500492. |
[5] |
F. Brezzi,
On the existence, uniqueness, and approximation of saddle point problems arising from Lagrangian multipliers, RAIRO, 8 (1974), 129-151.
|
[6] |
P. Chatzipantelidis,
A finite volume method based on the Crouzeix-Raviart element for elliptic PDE's in two dimensions, Numer. Math., 82 (1999), 409-432.
doi: 10.1007/s002110050425. |
[7] |
G. Chen, W. Hu, J. Shen, J. R. Singler, Y. Zhang and X. Zheng,
An HDG method for distributed control of convection diffusion PDEs, J. Comput. Appl. Math., 343 (2018), 643-661.
doi: 10.1016/j.cam.2018.05.028. |
[8] |
X. Feng and T. Lewis,
Local discontinuous Galerkin methods for one-dimensional second order fully nonlinear elliptic and parabolic equations, J. Sci. Comput., 59 (2014), 129-157.
doi: 10.1007/s10915-013-9763-3. |
[9] |
X. Feng, M. Neilan and S. Schenake,
Interior penalty discontinuous Galerkin methods for second order linear non-divergence form elliptic PDEs, J. Sci. Comput., 74 (2018), 1651-1676.
doi: 10.1007/s10915-017-0519-3. |
[10] |
K. Lipnikov, G. Manzini, F. Brezzi and A. Buffa,
The mimetic finite difference method for the 3D magnetostatic field problems on polyhedral meshes, J. Comput. Phys., 230 (2011), 305-328.
doi: 10.1016/j.jcp.2010.09.007. |
[11] |
Y. Liu and J. Wang,
Simplified weak Galerkin and new finite difference schemes for the Stokes equation, J. Comput. Appl. Math., 361 (2019), 176-206.
doi: 10.1016/j.cam.2019.04.024. |
[12] |
Y. Liu and J. Wang, A locking-free $ P_0 $ finite element method for linear elasticity equations on polytopal partitions, preprint, arXiv: 1911.08728, 2019. Google Scholar |
[13] |
L. Mu, J. Wang, Y. Wang and X. Ye, A weak Galerkin mixed finite element method for biharmonic equations, Numerical Solution of Partial Differential Equations: Theory, Algorithms, and their Applications, in: Springer Proceedings in Mathematics and Statistics, 45 (2013), 247-277.
doi: 10.1007/978-1-4614-7172-1_13. |
[14] |
L. Mu, J. Wang, X. Ye and S. Zhang,
A $C^0$-weak Galerkin finite element method for the biharmonic equation, J. Sci. Comput., 59 (2014), 473-495.
doi: 10.1007/s10915-013-9770-4. |
[15] |
P.-A. Raviart and J. M. Thomas, A Mixed Finite Element Method for Second Order Elliptic Problems, in: I. Galligani, E. Magenes (Eds.), Mathematical Aspects of the Finite Element Method, in: Lecture Notes in Math., vol. 606, Springer-Verlag, New York, 1977. Technical Report LA-UR-73-0479, Los Alamos Scientific Laboratory, Los Alamos, NM, 1973. |
[16] |
M. Stynes, Sharp anisotropic interpolation error estimates for rectangular Raviart-Thomas elements, Math. Comp., 83 (2014), 2675-2689.
doi: 10.1090/S0025-5718-2014-02826-3. |
[17] |
C. Wang, J. Wang, R. Wang and R. Zhang,
A locking-free weak Galerkin finite element method for elasticity problems in the primal formulation, J. Comput. Appl. Math., 307 (2016), 346-366.
doi: 10.1016/j.cam.2015.12.015. |
[18] |
R. Wang, X. Wang, Q. Zhai and R. Zhang,
A weak Galerkin finite element scheme for solving the stationary Stokes equations, J. Comput. Appl. Math., 302 (2016), 171-185.
doi: 10.1016/j.cam.2016.01.025. |
[19] |
J. Wang and X. Ye,
A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.
doi: 10.1016/j.cam.2012.10.003. |
[20] |
J. Wang and X. Ye,
A Weak Galerkin mixed finite element method for second-order elliptic problems, Math. Comp., 83 (2014), 2101-2126.
doi: 10.1090/S0025-5718-2014-02852-4. |
[21] |
X. Ye and S. Zhang, A conforming discontinuous Galerkin finite element method, Int. J. Numer. Anal. and Model., 17 (2020), 110-117. arXiv: 1904.03331. |
[22] |
X. Ye and S. Zhang, A conforming discontinuous Galerkin finite element method: Part Ⅱ, arXiv: 1907.01397. Google Scholar |
[23] |
H. Zhang, Y. Zou, Y. Xu, Q. Zhai and H. Yue,
Weak Galerkin finite element method for second order parabolic equations, Int. J. Numer. Anal. Model., 13 (2016), 525-544.
|
show all references
References:
[1] |
D. N. Arnold, F. Brezzi, B. Cockburn and L. D. Marini,
Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39 (2001/02), 1749-1779.
doi: 10.1137/S0036142901384162. |
[2] |
I. Babuška,
The finite element method with penalty, Math. Comp., 27 (1973), 221-228.
doi: 10.1090/S0025-5718-1973-0351118-5. |
[3] |
G. A. Baker,
Finite element methods for elliptic equations using nonconforming elements, Math. Comp., 31 (1977), 45-59.
doi: 10.1090/S0025-5718-1977-0431742-5. |
[4] |
L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo,
Basic principles of virtual element methods, Math. Models Methods Appl. Sci., 23 (2013), 199-214.
doi: 10.1142/S0218202512500492. |
[5] |
F. Brezzi,
On the existence, uniqueness, and approximation of saddle point problems arising from Lagrangian multipliers, RAIRO, 8 (1974), 129-151.
|
[6] |
P. Chatzipantelidis,
A finite volume method based on the Crouzeix-Raviart element for elliptic PDE's in two dimensions, Numer. Math., 82 (1999), 409-432.
doi: 10.1007/s002110050425. |
[7] |
G. Chen, W. Hu, J. Shen, J. R. Singler, Y. Zhang and X. Zheng,
An HDG method for distributed control of convection diffusion PDEs, J. Comput. Appl. Math., 343 (2018), 643-661.
doi: 10.1016/j.cam.2018.05.028. |
[8] |
X. Feng and T. Lewis,
Local discontinuous Galerkin methods for one-dimensional second order fully nonlinear elliptic and parabolic equations, J. Sci. Comput., 59 (2014), 129-157.
doi: 10.1007/s10915-013-9763-3. |
[9] |
X. Feng, M. Neilan and S. Schenake,
Interior penalty discontinuous Galerkin methods for second order linear non-divergence form elliptic PDEs, J. Sci. Comput., 74 (2018), 1651-1676.
doi: 10.1007/s10915-017-0519-3. |
[10] |
K. Lipnikov, G. Manzini, F. Brezzi and A. Buffa,
The mimetic finite difference method for the 3D magnetostatic field problems on polyhedral meshes, J. Comput. Phys., 230 (2011), 305-328.
doi: 10.1016/j.jcp.2010.09.007. |
[11] |
Y. Liu and J. Wang,
Simplified weak Galerkin and new finite difference schemes for the Stokes equation, J. Comput. Appl. Math., 361 (2019), 176-206.
doi: 10.1016/j.cam.2019.04.024. |
[12] |
Y. Liu and J. Wang, A locking-free $ P_0 $ finite element method for linear elasticity equations on polytopal partitions, preprint, arXiv: 1911.08728, 2019. Google Scholar |
[13] |
L. Mu, J. Wang, Y. Wang and X. Ye, A weak Galerkin mixed finite element method for biharmonic equations, Numerical Solution of Partial Differential Equations: Theory, Algorithms, and their Applications, in: Springer Proceedings in Mathematics and Statistics, 45 (2013), 247-277.
doi: 10.1007/978-1-4614-7172-1_13. |
[14] |
L. Mu, J. Wang, X. Ye and S. Zhang,
A $C^0$-weak Galerkin finite element method for the biharmonic equation, J. Sci. Comput., 59 (2014), 473-495.
doi: 10.1007/s10915-013-9770-4. |
[15] |
P.-A. Raviart and J. M. Thomas, A Mixed Finite Element Method for Second Order Elliptic Problems, in: I. Galligani, E. Magenes (Eds.), Mathematical Aspects of the Finite Element Method, in: Lecture Notes in Math., vol. 606, Springer-Verlag, New York, 1977. Technical Report LA-UR-73-0479, Los Alamos Scientific Laboratory, Los Alamos, NM, 1973. |
[16] |
M. Stynes, Sharp anisotropic interpolation error estimates for rectangular Raviart-Thomas elements, Math. Comp., 83 (2014), 2675-2689.
doi: 10.1090/S0025-5718-2014-02826-3. |
[17] |
C. Wang, J. Wang, R. Wang and R. Zhang,
A locking-free weak Galerkin finite element method for elasticity problems in the primal formulation, J. Comput. Appl. Math., 307 (2016), 346-366.
doi: 10.1016/j.cam.2015.12.015. |
[18] |
R. Wang, X. Wang, Q. Zhai and R. Zhang,
A weak Galerkin finite element scheme for solving the stationary Stokes equations, J. Comput. Appl. Math., 302 (2016), 171-185.
doi: 10.1016/j.cam.2016.01.025. |
[19] |
J. Wang and X. Ye,
A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.
doi: 10.1016/j.cam.2012.10.003. |
[20] |
J. Wang and X. Ye,
A Weak Galerkin mixed finite element method for second-order elliptic problems, Math. Comp., 83 (2014), 2101-2126.
doi: 10.1090/S0025-5718-2014-02852-4. |
[21] |
X. Ye and S. Zhang, A conforming discontinuous Galerkin finite element method, Int. J. Numer. Anal. and Model., 17 (2020), 110-117. arXiv: 1904.03331. |
[22] |
X. Ye and S. Zhang, A conforming discontinuous Galerkin finite element method: Part Ⅱ, arXiv: 1907.01397. Google Scholar |
[23] |
H. Zhang, Y. Zou, Y. Xu, Q. Zhai and H. Yue,
Weak Galerkin finite element method for second order parabolic equations, Int. J. Numer. Anal. Model., 13 (2016), 525-544.
|

level | rate | rate | |||
by |
|||||
6 | 0.1996E-02 | 1.97 | 0.8887E-02 | 1.98 | 1024 |
7 | 0.5013E-03 | 1.99 | 0.2228E-02 | 2.00 | 4096 |
8 | 0.1255E-03 | 2.00 | 0.5574E-03 | 2.00 | 16384 |
by |
|||||
6 | 0.2427E-02 | 1.97 | 0.1027E+00 | 1.02 | 3072 |
7 | 0.6100E-03 | 1.99 | 0.5105E-01 | 1.01 | 12288 |
8 | 0.1527E-03 | 2.00 | 0.2546E-01 | 1.00 | 49152 |
by |
|||||
5 | 0.1533E-03 | 3.00 | 0.2042E-01 | 2.03 | 1536 |
6 | 0.1915E-04 | 3.00 | 0.5061E-02 | 2.01 | 6144 |
7 | 0.2394E-05 | 3.00 | 0.1260E-02 | 2.01 | 24576 |
by |
|||||
5 | 0.7959E-05 | 4.00 | 0.1965E-02 | 3.00 | 2560 |
6 | 0.4971E-06 | 4.00 | 0.2451E-03 | 3.00 | 10240 |
7 | 0.3140E-07 | 3.98 | 0.3059E-04 | 3.00 | 40960 |
by |
|||||
4 | 0.1055E-04 | 4.97 | 0.1421E-02 | 4.05 | 960 |
5 | 0.3314E-06 | 4.99 | 0.8735E-04 | 4.02 | 3840 |
6 | 0.1057E-07 | 4.97 | 0.5417E-05 | 4.01 | 15360 |
by |
|||||
2 | 0.2835E-02 | 6.24 | 0.1450E+00 | 5.49 | 84 |
3 | 0.4532E-04 | 5.97 | 0.4718E-02 | 4.94 | 336 |
4 | 0.7115E-06 | 5.99 | 0.1478E-03 | 5.00 | 1344 |
level | rate | rate | |||
by |
|||||
6 | 0.1996E-02 | 1.97 | 0.8887E-02 | 1.98 | 1024 |
7 | 0.5013E-03 | 1.99 | 0.2228E-02 | 2.00 | 4096 |
8 | 0.1255E-03 | 2.00 | 0.5574E-03 | 2.00 | 16384 |
by |
|||||
6 | 0.2427E-02 | 1.97 | 0.1027E+00 | 1.02 | 3072 |
7 | 0.6100E-03 | 1.99 | 0.5105E-01 | 1.01 | 12288 |
8 | 0.1527E-03 | 2.00 | 0.2546E-01 | 1.00 | 49152 |
by |
|||||
5 | 0.1533E-03 | 3.00 | 0.2042E-01 | 2.03 | 1536 |
6 | 0.1915E-04 | 3.00 | 0.5061E-02 | 2.01 | 6144 |
7 | 0.2394E-05 | 3.00 | 0.1260E-02 | 2.01 | 24576 |
by |
|||||
5 | 0.7959E-05 | 4.00 | 0.1965E-02 | 3.00 | 2560 |
6 | 0.4971E-06 | 4.00 | 0.2451E-03 | 3.00 | 10240 |
7 | 0.3140E-07 | 3.98 | 0.3059E-04 | 3.00 | 40960 |
by |
|||||
4 | 0.1055E-04 | 4.97 | 0.1421E-02 | 4.05 | 960 |
5 | 0.3314E-06 | 4.99 | 0.8735E-04 | 4.02 | 3840 |
6 | 0.1057E-07 | 4.97 | 0.5417E-05 | 4.01 | 15360 |
by |
|||||
2 | 0.2835E-02 | 6.24 | 0.1450E+00 | 5.49 | 84 |
3 | 0.4532E-04 | 5.97 | 0.4718E-02 | 4.94 | 336 |
4 | 0.7115E-06 | 5.99 | 0.1478E-03 | 5.00 | 1344 |
level | rate | rate | |||
by |
|||||
6 | 0.4006E-03 | 1.99 | 0.2389E-02 | 1.99 | 4096 |
7 | 0.1003E-03 | 2.00 | 0.5982E-03 | 2.00 | 16384 |
8 | 0.2510E-04 | 2.00 | 0.1496E-03 | 2.00 | 65536 |
by |
|||||
6 | 0.2360E-04 | 2.99 | 0.3186E-02 | 1.99 | 9216 |
7 | 0.2953E-05 | 3.00 | 0.7976E-03 | 2.00 | 36864 |
8 | 0.3692E-06 | 3.00 | 0.1995E-03 | 2.00 | 147456 |
by |
|||||
5 | 0.1413E-04 | 4.08 | 0.1650E-02 | 2.97 | 4096 |
6 | 0.8676E-06 | 4.03 | 0.2072E-03 | 2.99 | 16384 |
7 | 0.5398E-07 | 4.01 | 0.2593E-04 | 3.00 | 65536 |
by |
|||||
3 | 0.2226E-02 | 4.59 | 0.5414E-01 | 3.52 | 400 |
4 | 0.9610E-04 | 4.53 | 0.3723E-02 | 3.86 | 1600 |
5 | 0.3279E-05 | 4.87 | 0.2392E-03 | 3.96 | 6400 |
level | rate | rate | |||
by |
|||||
6 | 0.4006E-03 | 1.99 | 0.2389E-02 | 1.99 | 4096 |
7 | 0.1003E-03 | 2.00 | 0.5982E-03 | 2.00 | 16384 |
8 | 0.2510E-04 | 2.00 | 0.1496E-03 | 2.00 | 65536 |
by |
|||||
6 | 0.2360E-04 | 2.99 | 0.3186E-02 | 1.99 | 9216 |
7 | 0.2953E-05 | 3.00 | 0.7976E-03 | 2.00 | 36864 |
8 | 0.3692E-06 | 3.00 | 0.1995E-03 | 2.00 | 147456 |
by |
|||||
5 | 0.1413E-04 | 4.08 | 0.1650E-02 | 2.97 | 4096 |
6 | 0.8676E-06 | 4.03 | 0.2072E-03 | 2.99 | 16384 |
7 | 0.5398E-07 | 4.01 | 0.2593E-04 | 3.00 | 65536 |
by |
|||||
3 | 0.2226E-02 | 4.59 | 0.5414E-01 | 3.52 | 400 |
4 | 0.9610E-04 | 4.53 | 0.3723E-02 | 3.86 | 1600 |
5 | 0.3279E-05 | 4.87 | 0.2392E-03 | 3.96 | 6400 |
level | rate | rate | |||
by |
|||||
3 | 0.8265E-02 | 1.06 | 0.4577E-01 | 1.14 | 16 |
4 | 0.2772E-02 | 1.58 | 0.1732E-01 | 1.40 | 64 |
5 | 0.7965E-03 | 1.80 | 0.6331E-02 | 1.45 | 256 |
6 | 0.2142E-03 | 1.90 | 0.2290E-02 | 1.47 | 1024 |
7 | 0.5564E-04 | 1.94 | 0.8213E-03 | 1.48 | 4096 |
8 | 0.1419E-04 | 1.97 | 0.2928E-03 | 1.49 | 16384 |
level | rate | rate | |||
by |
|||||
3 | 0.8265E-02 | 1.06 | 0.4577E-01 | 1.14 | 16 |
4 | 0.2772E-02 | 1.58 | 0.1732E-01 | 1.40 | 64 |
5 | 0.7965E-03 | 1.80 | 0.6331E-02 | 1.45 | 256 |
6 | 0.2142E-03 | 1.90 | 0.2290E-02 | 1.47 | 1024 |
7 | 0.5564E-04 | 1.94 | 0.8213E-03 | 1.48 | 4096 |
8 | 0.1419E-04 | 1.97 | 0.2928E-03 | 1.49 | 16384 |
level | rate | rate | |||
by |
|||||
3 | 0.4929E-02 | 0.97 | 0.5371E-01 | 0.80 | 16 |
4 | 0.1917E-02 | 1.36 | 0.2401E-01 | 1.16 | 64 |
5 | 0.6004E-03 | 1.67 | 0.9407E-02 | 1.35 | 256 |
6 | 0.1682E-03 | 1.84 | 0.3507E-02 | 1.42 | 1024 |
7 | 0.4457E-04 | 1.92 | 0.1275E-02 | 1.46 | 4096 |
8 | 0.1148E-04 | 1.96 | 0.4576E-03 | 1.48 | 16384 |
level | rate | rate | |||
by |
|||||
3 | 0.4929E-02 | 0.97 | 0.5371E-01 | 0.80 | 16 |
4 | 0.1917E-02 | 1.36 | 0.2401E-01 | 1.16 | 64 |
5 | 0.6004E-03 | 1.67 | 0.9407E-02 | 1.35 | 256 |
6 | 0.1682E-03 | 1.84 | 0.3507E-02 | 1.42 | 1024 |
7 | 0.4457E-04 | 1.92 | 0.1275E-02 | 1.46 | 4096 |
8 | 0.1148E-04 | 1.96 | 0.4576E-03 | 1.48 | 16384 |
[1] |
Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196 |
[2] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
[3] |
Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184 |
[4] |
Derrick Jones, Xu Zhang. A conforming-nonconforming mixed immersed finite element method for unsteady Stokes equations with moving interfaces. Electronic Research Archive, , () : -. doi: 10.3934/era.2021032 |
[5] |
Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025 |
[6] |
Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2619-2633. doi: 10.3934/dcds.2020377 |
[7] |
Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222 |
[8] |
Hongsong Feng, Shan Zhao. A multigrid based finite difference method for solving parabolic interface problem. Electronic Research Archive, , () : -. doi: 10.3934/era.2021031 |
[9] |
Li Chu, Bo Wang, Jie Zhang, Hong-Wei Zhang. Convergence analysis of a smoothing SAA method for a stochastic mathematical program with second-order cone complementarity constraints. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1863-1886. doi: 10.3934/jimo.2020050 |
[10] |
Mikhail Dokuchaev, Guanglu Zhou, Song Wang. A modification of Galerkin's method for option pricing. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021077 |
[11] |
Anton Schiela, Julian Ortiz. Second order directional shape derivatives of integrals on submanifolds. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021017 |
[12] |
Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200 |
[13] |
Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024 |
[14] |
Simone Fiori, Italo Cervigni, Mattia Ippoliti, Claudio Menotta. Synthetic nonlinear second-order oscillators on Riemannian manifolds and their numerical simulation. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021088 |
[15] |
Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020136 |
[16] |
Haiyan Wang, Jinyan Fan. Convergence properties of inexact Levenberg-Marquardt method under Hölderian local error bound. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2265-2275. doi: 10.3934/jimo.2020068 |
[17] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[18] |
Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021030 |
[19] |
Agnid Banerjee, Ramesh Manna. Carleman estimates for a class of variable coefficient degenerate elliptic operators with applications to unique continuation. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021070 |
[20] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
Impact Factor: 0.263
Tools
Article outline
Figures and Tables
[Back to Top]