
-
Previous Article
Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment
- ERA Home
- This Issue
-
Next Article
Solvability of the matrix equation $ AX^{2} = B $ with semi-tensor product
Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle
1. | School of Mathematics, Jilin University, Changchun 130012, China |
2. | School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China |
This paper focuses on two-dimensional continuous subsonic-sonic potential flows in a semi-infinitely long nozzle with a straight lower wall and an upper wall which is convergent at the outlet while straight at the far fields. It is proved that if the variation rate of the cross section of the nozzle is suitably small, there exists a unique continuous subsonic-sonic flows in the nozzle such that the sonic curve intersects the upper wall at a fixed point and the velocity of the flow is along the normal direction at the sonic curve. Furthermore, the sonic curve is free, where the flow is singular in the sense that the flow speed is only Hölder continuous and the flow acceleration blows up. Additionally, the asymptotic behaviors of the flow speed at the far fields is shown.
References:
[1] |
L. Bers,
Existence and uniqueness of a subsonic flow past a given profile, Comm. Pure Appl. Math., 7 (1954), 441-504.
doi: 10.1002/cpa.3160070303. |
[2] |
L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1958. |
[3] |
G.-Q. Chen, C. M. Dafermos, M. Slemrod and D. Wang,
On two-dimensional sonic-subsonic flow, Comm. Math. Phys., 271 (2007), 635-647.
doi: 10.1007/s00220-007-0211-9. |
[4] |
C. Chen, L. Du, C. Xie and Z. Xin,
Two dimensional subsonic Euler flows past a wall or a symmetric body, Arch. Ration. Mech. Anal., 221 (2016), 559-602.
doi: 10.1007/s00205-016-0968-0. |
[5] |
G.-Q. Chen, F.-M. Huang and T.-Y. Wang,
Subsonic-sonic limit of approximate solutions to multidimensional steady Euler equations, Arch. Ration. Mech. Anal., 219 (2016), 719-740.
doi: 10.1007/s00205-015-0905-7. |
[6] |
G.-Q. Chen, F.-M. Huang, T.-Y. Wang and W. Xiang,
Steady Euler flows with large vorticity and characteristic discontinuities in arbitrary infinitely long nozzles, Adv. Math., 346 (2019), 946-1008.
doi: 10.1016/j.aim.2019.02.002. |
[7] |
C. Chen and C. Xie,
Existence of steady subsonic Euler flows through infinitely long periodic nozzles, J. Differential Equations, 252 (2012), 4315-4331.
doi: 10.1016/j.jde.2011.12.015. |
[8] |
R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Interscience Publishers, Inc., New York, N. Y., 1948. |
[9] |
G. Dong, Nonlinear Partial Differential Equations of Second Order, Translations of Mathematical Monographs. 95, American Mathematical Society, Providence, RI, 1991.
doi: 10.1090/mmono/095. |
[10] |
L. Du and B. Duan,
Subsonic Euler flows with large vorticity through an infinitely long axisymmetric nozzle, J. Math. Fluid Mech., 18 (2016), 511-530.
doi: 10.1007/s00021-016-0255-8. |
[11] |
L. Du, C. Xie and Z. Xin,
Steady subsonic ideal flows through an infinitely long nozzle with large vorticity, Comm. Math. Phys., 328 (2014), 327-354.
doi: 10.1007/s00220-014-1951-y. |
[12] |
L. Du, Z. Xin and W. Yan,
Subsonic flows in a multi-dimensional nozzle, Arch. Ration. Mech. Anal., 201 (2011), 965-1012.
doi: 10.1007/s00205-011-0406-2. |
[13] |
R. Finn and D. Gilbarg,
Three-dimensional subsonic flows, and asymptotic estimates for elliptic partial differential equations, Acta Math., 98 (1957), 265-296.
doi: 10.1007/BF02404476. |
[14] |
F. Huang, T. Wang and Y. Wang,
On multi-dimensional sonic-subsonic flow, Acta Math. Sci. Ser. B (Engl. Ed.), 31 (2011), 2131-2140.
doi: 10.1016/S0252-9602(11)60389-5. |
[15] |
A. Kuz'min, Boundary Value Problems for Transonic Flow, John Wiley and Sons, Ltd, 2002. Google Scholar |
[16] |
Y. Nie and C. Wang,
Continuous subsonic-sonic flows in convergent nozzles with straight solid walls, Nonlinearity, 29 (2016), 86-130.
doi: 10.1088/0951-7715/29/1/86. |
[17] |
Y. Nie and C. Wang,
Continuous subsonic-sonic flows in a convergent nozzle, Acta Math. Sin. (Engl. Ser.), 34 (2018), 749-772.
doi: 10.1007/s10114-017-7341-6. |
[18] |
C. Wang,
Continuous subsonic-sonic flows in a general nozzle, J. Differential Equations, 259 (2015), 2546-2575.
doi: 10.1016/j.jde.2015.03.036. |
[19] |
C. Wang,
A free boundary problem of a degenerate elliptic equation and subsonic-sonic flows with general sonic curves, SIAM J. Math. Anal., 51 (2019), 4977-5010.
doi: 10.1137/19M1255860. |
[20] |
C. Wang and Z. Xin,
On a degenerate free boundary problem and continuous subsonic-sonic flows in a convergent nozzle, Arch. Ration. Mech. Anal., 208 (2013), 911-975.
doi: 10.1007/s00205-012-0607-3. |
[21] |
C. Wang and M. Zhou,
A degenerate elliptic problem from subsonic-sonic flows in general nozzles, J. Differential Equations, 267 (2019), 3778-3796.
doi: 10.1016/j.jde.2019.04.026. |
[22] |
C. Xie and Z. Xin,
Global subsonic and subsonic-sonic flows through infinitely long nozzles, Indiana Univ. Math. J., 56 (2007), 2991-3023.
doi: 10.1512/iumj.2007.56.3108. |
[23] |
C. Xie and Z. Xin,
Existence of global steady subsonic Euler flows through infinitely long nozzles, SIAM J. Math. Anal., 42 (2010), 751-784.
doi: 10.1137/09076667X. |
[24] |
C. Xie and Z. Xin,
Global subsonic and subsonic-sonic flows through infinitely long axially symmetric nozzles, J. Differential Equations, 248 (2010), 2657-2683.
doi: 10.1016/j.jde.2010.02.007. |
show all references
References:
[1] |
L. Bers,
Existence and uniqueness of a subsonic flow past a given profile, Comm. Pure Appl. Math., 7 (1954), 441-504.
doi: 10.1002/cpa.3160070303. |
[2] |
L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1958. |
[3] |
G.-Q. Chen, C. M. Dafermos, M. Slemrod and D. Wang,
On two-dimensional sonic-subsonic flow, Comm. Math. Phys., 271 (2007), 635-647.
doi: 10.1007/s00220-007-0211-9. |
[4] |
C. Chen, L. Du, C. Xie and Z. Xin,
Two dimensional subsonic Euler flows past a wall or a symmetric body, Arch. Ration. Mech. Anal., 221 (2016), 559-602.
doi: 10.1007/s00205-016-0968-0. |
[5] |
G.-Q. Chen, F.-M. Huang and T.-Y. Wang,
Subsonic-sonic limit of approximate solutions to multidimensional steady Euler equations, Arch. Ration. Mech. Anal., 219 (2016), 719-740.
doi: 10.1007/s00205-015-0905-7. |
[6] |
G.-Q. Chen, F.-M. Huang, T.-Y. Wang and W. Xiang,
Steady Euler flows with large vorticity and characteristic discontinuities in arbitrary infinitely long nozzles, Adv. Math., 346 (2019), 946-1008.
doi: 10.1016/j.aim.2019.02.002. |
[7] |
C. Chen and C. Xie,
Existence of steady subsonic Euler flows through infinitely long periodic nozzles, J. Differential Equations, 252 (2012), 4315-4331.
doi: 10.1016/j.jde.2011.12.015. |
[8] |
R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Interscience Publishers, Inc., New York, N. Y., 1948. |
[9] |
G. Dong, Nonlinear Partial Differential Equations of Second Order, Translations of Mathematical Monographs. 95, American Mathematical Society, Providence, RI, 1991.
doi: 10.1090/mmono/095. |
[10] |
L. Du and B. Duan,
Subsonic Euler flows with large vorticity through an infinitely long axisymmetric nozzle, J. Math. Fluid Mech., 18 (2016), 511-530.
doi: 10.1007/s00021-016-0255-8. |
[11] |
L. Du, C. Xie and Z. Xin,
Steady subsonic ideal flows through an infinitely long nozzle with large vorticity, Comm. Math. Phys., 328 (2014), 327-354.
doi: 10.1007/s00220-014-1951-y. |
[12] |
L. Du, Z. Xin and W. Yan,
Subsonic flows in a multi-dimensional nozzle, Arch. Ration. Mech. Anal., 201 (2011), 965-1012.
doi: 10.1007/s00205-011-0406-2. |
[13] |
R. Finn and D. Gilbarg,
Three-dimensional subsonic flows, and asymptotic estimates for elliptic partial differential equations, Acta Math., 98 (1957), 265-296.
doi: 10.1007/BF02404476. |
[14] |
F. Huang, T. Wang and Y. Wang,
On multi-dimensional sonic-subsonic flow, Acta Math. Sci. Ser. B (Engl. Ed.), 31 (2011), 2131-2140.
doi: 10.1016/S0252-9602(11)60389-5. |
[15] |
A. Kuz'min, Boundary Value Problems for Transonic Flow, John Wiley and Sons, Ltd, 2002. Google Scholar |
[16] |
Y. Nie and C. Wang,
Continuous subsonic-sonic flows in convergent nozzles with straight solid walls, Nonlinearity, 29 (2016), 86-130.
doi: 10.1088/0951-7715/29/1/86. |
[17] |
Y. Nie and C. Wang,
Continuous subsonic-sonic flows in a convergent nozzle, Acta Math. Sin. (Engl. Ser.), 34 (2018), 749-772.
doi: 10.1007/s10114-017-7341-6. |
[18] |
C. Wang,
Continuous subsonic-sonic flows in a general nozzle, J. Differential Equations, 259 (2015), 2546-2575.
doi: 10.1016/j.jde.2015.03.036. |
[19] |
C. Wang,
A free boundary problem of a degenerate elliptic equation and subsonic-sonic flows with general sonic curves, SIAM J. Math. Anal., 51 (2019), 4977-5010.
doi: 10.1137/19M1255860. |
[20] |
C. Wang and Z. Xin,
On a degenerate free boundary problem and continuous subsonic-sonic flows in a convergent nozzle, Arch. Ration. Mech. Anal., 208 (2013), 911-975.
doi: 10.1007/s00205-012-0607-3. |
[21] |
C. Wang and M. Zhou,
A degenerate elliptic problem from subsonic-sonic flows in general nozzles, J. Differential Equations, 267 (2019), 3778-3796.
doi: 10.1016/j.jde.2019.04.026. |
[22] |
C. Xie and Z. Xin,
Global subsonic and subsonic-sonic flows through infinitely long nozzles, Indiana Univ. Math. J., 56 (2007), 2991-3023.
doi: 10.1512/iumj.2007.56.3108. |
[23] |
C. Xie and Z. Xin,
Existence of global steady subsonic Euler flows through infinitely long nozzles, SIAM J. Math. Anal., 42 (2010), 751-784.
doi: 10.1137/09076667X. |
[24] |
C. Xie and Z. Xin,
Global subsonic and subsonic-sonic flows through infinitely long axially symmetric nozzles, J. Differential Equations, 248 (2010), 2657-2683.
doi: 10.1016/j.jde.2010.02.007. |
[1] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[2] |
Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021028 |
[3] |
Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387 |
[4] |
Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020340 |
[5] |
Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034 |
[6] |
Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230 |
[7] |
Tomáš Bodnár, Philippe Fraunié, Petr Knobloch, Hynek Řezníček. Numerical evaluation of artificial boundary condition for wall-bounded stably stratified flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 785-801. doi: 10.3934/dcdss.2020333 |
[8] |
Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084 |
[9] |
Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154 |
[10] |
Xiaofeng Ren, David Shoup. The impact of the domain boundary on an inhibitory system: Interior discs and boundary half discs. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3957-3979. doi: 10.3934/dcds.2020048 |
[11] |
Chang-Yeol Jung, Roger Temam. Interaction of boundary layers and corner singularities. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 315-339. doi: 10.3934/dcds.2009.23.315 |
[12] |
Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124 |
[13] |
Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571 |
[14] |
Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381 |
[15] |
Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021004 |
[16] |
Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020453 |
[17] |
Yoshihisa Morita, Kunimochi Sakamoto. Turing type instability in a diffusion model with mass transport on the boundary. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3813-3836. doi: 10.3934/dcds.2020160 |
[18] |
Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061 |
[19] |
Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399 |
[20] |
Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052 |
Impact Factor: 0.263
Tools
Article outline
Figures and Tables
[Back to Top]