doi: 10.3934/era.2020124

A generalization on derivations of Lie algebras

School of Mathematics and Statistics, Northeast Normal University, Changchun, China

Received  April 2020 Revised  November 2020 Published  December 2020

We initiate a study on a range of new generalized derivations of finite-dimensional Lie algebras over an algebraically closed field of characteristic zero. This new generalization of derivations has an analogue in the theory of associative prime rings and unites many well-known generalized derivations that have already appeared extensively in the study of Lie algebras and other nonassociative algebras. After exploiting fundamental properties, we introduce and analyze their interiors, especially focusing on the rationality of the corresponding Hilbert series. Applying techniques in computational ideal theory we develop an approach to explicitly compute these new generalized derivations for the three-dimensional special linear Lie algebra over the complex field.

Citation: Hongliang Chang, Yin Chen, Runxuan Zhang. A generalization on derivations of Lie algebras. Electronic Research Archive, doi: 10.3934/era.2020124
References:
[1]

K. I. BeidaM. Brešar and M. A. Chebotar, Generalized functional identities with (anti-) automorphisms and derivations on prime rings. Ⅰ., J. Algebra, 215 (1999), 644-665.  doi: 10.1006/jabr.1998.7751.  Google Scholar

[2]

H. E. Bell and L.-C. Kappe, Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hungar., 53 (1989), 339-346.  doi: 10.1007/BF01953371.  Google Scholar

[3]

G. BenkartA. I. Kostrikin and M. I. Kuznetsov, Finite-dimensional simple Lie algebras with a nonsingular derivation, J. Algebra, 171 (1995), 894-916.  doi: 10.1006/jabr.1995.1041.  Google Scholar

[4]

J. Bergen and P. Grzeszczuk, Invariants of skew derivations, Proc. Amer. Math. Soc., 125 (1997), 3481-3488.  doi: 10.1090/S0002-9939-97-04045-8.  Google Scholar

[5]

M. Brešar, Centralizing mappings and derivations in prime rings, J. Algebra, 156 (1993), 385-394.  doi: 10.1006/jabr.1993.1080.  Google Scholar

[6]

M. Brešar, Near-derivations in Lie algebras, J. Algebra, 320 (2008), 3765-3772.  doi: 10.1016/j.jalgebra.2008.09.007.  Google Scholar

[7]

D. Burde, Left-symmetric algebras, or pre-Lie algebras in geometry and physics, Cent. Eur. J. Math., 4 (2006), 323-357.  doi: 10.2478/s11533-006-0014-9.  Google Scholar

[8]

D. Burde and W. A. Moens, Periodic derivations and prederivations of Lie algebras, J. Algebra, 357 (2012), 208-221.  doi: 10.1016/j.jalgebra.2012.02.015.  Google Scholar

[9]

Y. Chen and R. Zhang, A commutative algebra approach to multiplicative Hom-Lie algebras, arXiv: 1907.02415. Google Scholar

[10]

C.-L. Chuang and T.-K. Lee, Identities with a single skew derivation, J. Algebra, 288 (2005), 59-77.  doi: 10.1016/j.jalgebra.2003.12.032.  Google Scholar

[11]

D. Cox, J. Little and D. O'Shea, Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra, Third edition., Undergraduate Texts in Mathematics, Springer, New York, 2007. doi: 10.1007/978-0-387-35651-8.  Google Scholar

[12]

V. De Filippis and F. Wei, $b$-generalized $(\alpha, \beta)$-derivations and $b$-generalized $(\alpha, \beta)$-biderivations of prime rings, Taiwanese J. Math., 22 (2018), 313-323.  doi: 10.11650/tjm/170903.  Google Scholar

[13]

K. Erdmann and M. J. Wildon, Introduction to Lie Algebras, Springer Undergraduate Mathematics Series. Springer-Verlag London, Ltd., London, 2006. doi: 10.1007/1-84628-490-2.  Google Scholar

[14]

R. García-DelgadoG. Salgado and O. A. Sánchez-Valenzuela, On 3-dimensional complex Hom-Lie algebras, J. Algebra, 555 (2020), 361-385.  doi: 10.1016/j.jalgebra.2020.03.005.  Google Scholar

[15]

L. Guo, P. J. Cassidy, W. F. Keigher and W. Y. Sit, Differential Algebra and Related Topics, Proceedings of the International Workshop held at Rutgers University, Newark, NJ. World Scientific Publishing Co., Inc., River Edge, NJ, 2002. doi: 10.1142/4768.  Google Scholar

[16]

L. Guo and W. Keigher, On differential Rota-Baxter algebras, J. Pure Appl. Algebra, 212 (2008), 522-540.  doi: 10.1016/j.jpaa.2007.06.008.  Google Scholar

[17]

L. Guo and F. Li, Structure of Hochschild cohomology of path algebras and differential formulation of Euler's polyhedron formula, Asian J. Math., 18 (2014), 545-572.  doi: 10.4310/AJM.2014.v18.n3.a9.  Google Scholar

[18]

J. T. HartwigD. Larsson and S. D. Silvestrov, Deformations of Lie algebras using $\sigma$-derivations, J. Algebra, 295 (2006), 314-361.  doi: 10.1016/j.jalgebra.2005.07.036.  Google Scholar

[19]

B. Hvala, Generalized derivations in rings, Comm. Algebra, 26 (1998), 1147-1166.  doi: 10.1080/00927879808826190.  Google Scholar

[20]

N. Jacobson, A note on automorphisms and derivations of Lie algebras, Proc. Amer. Math. Soc., 6 (1955), 281-283.  doi: 10.1090/S0002-9939-1955-0068532-9.  Google Scholar

[21]

V. K. Kharchenko and A. Z. Popov, Skew derivations of prime rings, Comm. Algebra, 20 (1992), 3321-3345.  doi: 10.1080/00927879208824517.  Google Scholar

[22]

E. R. Kolchin, Differential algebra and algebraic groups, Pure and Applied Mathematics, Vol. 54. Academic Press, New York-London, 1973.  Google Scholar

[23]

G. F. Leger and E. M. Luks, Generalized derivations of Lie algebras, J. Algebra, 228 (2000), 165-203.  doi: 10.1006/jabr.1999.8250.  Google Scholar

[24]

P. Novotný and J. Hrivnák, On $(\alpha, \beta, \gamma)$-derivations of Lie algebras and corresponding invariant functions, J. Geom. Phys., 58 (2008), 208-217.  doi: 10.1016/j.geomphys.2007.10.005.  Google Scholar

[25]

E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957), 1093-1100.  doi: 10.1090/S0002-9939-1957-0095863-0.  Google Scholar

[26]

J. F. Ritt, Differential Equations from the Algebraic Standpoint, American Mathematical Society Colloquium Publications, Vol. 14, American Mathematical Society, New York, 1932.  Google Scholar

[27]

M. van der Put and M. F. Singer, Galois Theory of Linear Differential Equations, Grundlehren der Mathematischen Wissenschaften, Vol. 328, Springer-Verlag, Berlin, 2003. doi: 10.1007/978-3-642-55750-7.  Google Scholar

[28]

P. Zusmanovich, On $\delta$-derivations of Lie algebras and superalgebras, J. Algebra, 324 (2010), 3470-3486.  doi: 10.1016/j.jalgebra.2010.09.032.  Google Scholar

show all references

References:
[1]

K. I. BeidaM. Brešar and M. A. Chebotar, Generalized functional identities with (anti-) automorphisms and derivations on prime rings. Ⅰ., J. Algebra, 215 (1999), 644-665.  doi: 10.1006/jabr.1998.7751.  Google Scholar

[2]

H. E. Bell and L.-C. Kappe, Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hungar., 53 (1989), 339-346.  doi: 10.1007/BF01953371.  Google Scholar

[3]

G. BenkartA. I. Kostrikin and M. I. Kuznetsov, Finite-dimensional simple Lie algebras with a nonsingular derivation, J. Algebra, 171 (1995), 894-916.  doi: 10.1006/jabr.1995.1041.  Google Scholar

[4]

J. Bergen and P. Grzeszczuk, Invariants of skew derivations, Proc. Amer. Math. Soc., 125 (1997), 3481-3488.  doi: 10.1090/S0002-9939-97-04045-8.  Google Scholar

[5]

M. Brešar, Centralizing mappings and derivations in prime rings, J. Algebra, 156 (1993), 385-394.  doi: 10.1006/jabr.1993.1080.  Google Scholar

[6]

M. Brešar, Near-derivations in Lie algebras, J. Algebra, 320 (2008), 3765-3772.  doi: 10.1016/j.jalgebra.2008.09.007.  Google Scholar

[7]

D. Burde, Left-symmetric algebras, or pre-Lie algebras in geometry and physics, Cent. Eur. J. Math., 4 (2006), 323-357.  doi: 10.2478/s11533-006-0014-9.  Google Scholar

[8]

D. Burde and W. A. Moens, Periodic derivations and prederivations of Lie algebras, J. Algebra, 357 (2012), 208-221.  doi: 10.1016/j.jalgebra.2012.02.015.  Google Scholar

[9]

Y. Chen and R. Zhang, A commutative algebra approach to multiplicative Hom-Lie algebras, arXiv: 1907.02415. Google Scholar

[10]

C.-L. Chuang and T.-K. Lee, Identities with a single skew derivation, J. Algebra, 288 (2005), 59-77.  doi: 10.1016/j.jalgebra.2003.12.032.  Google Scholar

[11]

D. Cox, J. Little and D. O'Shea, Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra, Third edition., Undergraduate Texts in Mathematics, Springer, New York, 2007. doi: 10.1007/978-0-387-35651-8.  Google Scholar

[12]

V. De Filippis and F. Wei, $b$-generalized $(\alpha, \beta)$-derivations and $b$-generalized $(\alpha, \beta)$-biderivations of prime rings, Taiwanese J. Math., 22 (2018), 313-323.  doi: 10.11650/tjm/170903.  Google Scholar

[13]

K. Erdmann and M. J. Wildon, Introduction to Lie Algebras, Springer Undergraduate Mathematics Series. Springer-Verlag London, Ltd., London, 2006. doi: 10.1007/1-84628-490-2.  Google Scholar

[14]

R. García-DelgadoG. Salgado and O. A. Sánchez-Valenzuela, On 3-dimensional complex Hom-Lie algebras, J. Algebra, 555 (2020), 361-385.  doi: 10.1016/j.jalgebra.2020.03.005.  Google Scholar

[15]

L. Guo, P. J. Cassidy, W. F. Keigher and W. Y. Sit, Differential Algebra and Related Topics, Proceedings of the International Workshop held at Rutgers University, Newark, NJ. World Scientific Publishing Co., Inc., River Edge, NJ, 2002. doi: 10.1142/4768.  Google Scholar

[16]

L. Guo and W. Keigher, On differential Rota-Baxter algebras, J. Pure Appl. Algebra, 212 (2008), 522-540.  doi: 10.1016/j.jpaa.2007.06.008.  Google Scholar

[17]

L. Guo and F. Li, Structure of Hochschild cohomology of path algebras and differential formulation of Euler's polyhedron formula, Asian J. Math., 18 (2014), 545-572.  doi: 10.4310/AJM.2014.v18.n3.a9.  Google Scholar

[18]

J. T. HartwigD. Larsson and S. D. Silvestrov, Deformations of Lie algebras using $\sigma$-derivations, J. Algebra, 295 (2006), 314-361.  doi: 10.1016/j.jalgebra.2005.07.036.  Google Scholar

[19]

B. Hvala, Generalized derivations in rings, Comm. Algebra, 26 (1998), 1147-1166.  doi: 10.1080/00927879808826190.  Google Scholar

[20]

N. Jacobson, A note on automorphisms and derivations of Lie algebras, Proc. Amer. Math. Soc., 6 (1955), 281-283.  doi: 10.1090/S0002-9939-1955-0068532-9.  Google Scholar

[21]

V. K. Kharchenko and A. Z. Popov, Skew derivations of prime rings, Comm. Algebra, 20 (1992), 3321-3345.  doi: 10.1080/00927879208824517.  Google Scholar

[22]

E. R. Kolchin, Differential algebra and algebraic groups, Pure and Applied Mathematics, Vol. 54. Academic Press, New York-London, 1973.  Google Scholar

[23]

G. F. Leger and E. M. Luks, Generalized derivations of Lie algebras, J. Algebra, 228 (2000), 165-203.  doi: 10.1006/jabr.1999.8250.  Google Scholar

[24]

P. Novotný and J. Hrivnák, On $(\alpha, \beta, \gamma)$-derivations of Lie algebras and corresponding invariant functions, J. Geom. Phys., 58 (2008), 208-217.  doi: 10.1016/j.geomphys.2007.10.005.  Google Scholar

[25]

E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957), 1093-1100.  doi: 10.1090/S0002-9939-1957-0095863-0.  Google Scholar

[26]

J. F. Ritt, Differential Equations from the Algebraic Standpoint, American Mathematical Society Colloquium Publications, Vol. 14, American Mathematical Society, New York, 1932.  Google Scholar

[27]

M. van der Put and M. F. Singer, Galois Theory of Linear Differential Equations, Grundlehren der Mathematischen Wissenschaften, Vol. 328, Springer-Verlag, Berlin, 2003. doi: 10.1007/978-3-642-55750-7.  Google Scholar

[28]

P. Zusmanovich, On $\delta$-derivations of Lie algebras and superalgebras, J. Algebra, 324 (2010), 3470-3486.  doi: 10.1016/j.jalgebra.2010.09.032.  Google Scholar

[1]

Nicola Pace, Angelo Sonnino. On the existence of PD-sets: Algorithms arising from automorphism groups of codes. Advances in Mathematics of Communications, 2021, 15 (2) : 267-277. doi: 10.3934/amc.2020065

[2]

Editorial Office. Retraction: Wei Gao and Juan L. G. Guirao, Preface. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : ⅰ-ⅰ. doi: 10.3934/dcdss.201904i

[3]

Hongyan Guo. Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra. Electronic Research Archive, , () : -. doi: 10.3934/era.2021008

[4]

Chandra Shekhar, Amit Kumar, Shreekant Varshney, Sherif Ibrahim Ammar. $ \bf{M/G/1} $ fault-tolerant machining system with imperfection. Journal of Industrial & Management Optimization, 2021, 17 (1) : 1-28. doi: 10.3934/jimo.2019096

[5]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[6]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[7]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[8]

Jie Shen, Nan Zheng. Efficient and accurate sav schemes for the generalized Zakharov systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 645-666. doi: 10.3934/dcdsb.2020262

[9]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[10]

Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020286

[11]

Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021002

[12]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[13]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[14]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[15]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[16]

Yen-Luan Chen, Chin-Chih Chang, Zhe George Zhang, Xiaofeng Chen. Optimal preventive "maintenance-first or -last" policies with generalized imperfect maintenance models. Journal of Industrial & Management Optimization, 2021, 17 (1) : 501-516. doi: 10.3934/jimo.2020149

[17]

Jing Zhou, Cheng Lu, Ye Tian, Xiaoying Tang. A SOCP relaxation based branch-and-bound method for generalized trust-region subproblem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 151-168. doi: 10.3934/jimo.2019104

[18]

Junchao Zhou, Yunge Xu, Lisha Wang, Nian Li. Nearly optimal codebooks from generalized Boolean bent functions over $ \mathbb{Z}_{4} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020121

[19]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[20]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

 Impact Factor: 0.263

Metrics

  • PDF downloads (14)
  • HTML views (55)
  • Cited by (0)

Other articles
by authors

[Back to Top]