doi: 10.3934/era.2020126

Hybridized weak Galerkin finite element methods for Brinkman equations

1. 

School of Mathematics, Jilin University, Changchun, Jilin 130012, China

2. 

National Applied Mathematical Center (Jilin), Changchun, Jilin 130012, China

3. 

Department of Mathematics, Texas State University, San Marcos, TX 78666, USA

4. 

School of Mathematical Sciences and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China

* Corresponding author: Zichan Wang

Received  August 2020 Revised  November 2020 Published  December 2020

Fund Project: The first author is supported by NSFC grant 41704116 and Jilin Provincial Excellent Youth Talents Foundation 20180520093JH

This paper presents a hybridized weak Galerkin (HWG) finite element method for solving the Brinkman equations. Mathematically, Brinkman equations can model the Stokes and Darcy flows in a unified framework so as to describe the fluid motion in porous media with fractures. Numerical schemes for Brinkman equations, therefore, must be designed to tackle Stokes and Darcy flows at the same time. We demonstrate that HWG is capable of providing very accurate and stable numerical approximations for both Darcy and Stokes. The main features of HWG is that it approximates the differential operators by their weak forms as distributions and it introduces the Lagrange multipliers to relax certain constraints. We establish the optimal order error estimates for HWG solutions of Brinkman equations. We also present a Schur complement formulation of HWG, which reduces the systems' computational complexity significantly. A number of numerical experiments are provided to confirm the theoretical developments.

Citation: Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, doi: 10.3934/era.2020126
References:
[1]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Springer, New York, 2008. doi: 10.1007/978-0-387-75934-0.  Google Scholar

[2]

Z. Chen, Finite Element Methods and Their Applications, Springer-Verlag Berlin, 2005.  Google Scholar

[3]

L. ChenJ. Wang and X. Ye, A posteriori error estimates for weak Galerkin finite element methods for second order elliptic problems, J. Sci. Comput., 59 (2014), 496-511.  doi: 10.1007/s10915-013-9771-3.  Google Scholar

[4]

B. CockburnJ. Gopalakrishnan and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 47 (2009), 1319-1365.  doi: 10.1137/070706616.  Google Scholar

[5]

A. HannukainenM. Juntunen and R. Stenberg, Computations with finite element methods for the Brinkman problem, Comput. Geosci., 15 (2011), 155-166.   Google Scholar

[6]

M. Juntunen and R. Stenberg, Analysis of finite element methods for the Brinkman problem, Calcolo, 47 (2010), 129-147.  doi: 10.1007/s10092-009-0017-6.  Google Scholar

[7]

J. Könnö and R. Stenberg, Numerical computations with $H$(div)-finite elements for the Brinkman problem, Comput. Geosci., 16 (2012), 139-158.  doi: 10.1007/s10596-011-9259-x.  Google Scholar

[8]

K. A. MardalX.-C. Tai and R. Winther, A robust finite element method for Darcy-Stokes flow, SIAM J. Numer. Anal., 40 (2002), 1605-1631.  doi: 10.1137/S0036142901383910.  Google Scholar

[9]

L. MuJ. WangY. Wang and X. Ye, A computational study of the weak Galerkin method for second-order elliptic equations, Numer. Algorithms, 63 (2013), 753-777.  doi: 10.1007/s11075-012-9651-1.  Google Scholar

[10]

L. MuJ. Wang and X. Ye, Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes, Numer. Methods PDE, 30 (2014), 1003-1029.  doi: 10.1002/num.21855.  Google Scholar

[11]

L. MuJ. Wang and X. Ye, A stable numerical algorithm for the Brinkman equations by weak Galerkin finite element methods, J. Comput. Phys., 273 (2014), 327-342.  doi: 10.1016/j.jcp.2014.04.017.  Google Scholar

[12]

L. MuJ. Wang and X. Ye, A hybridized formulation for the weak Galerkin mixed finite element method, J. Comput. Appl. Math., 307 (2016), 335-345.  doi: 10.1016/j.cam.2016.01.004.  Google Scholar

[13]

L. MuJ. WangX. Ye and S. Zhang, A $C^0$-weak Galerkin finite element method for the biharmonic equation, J. Sci. Comput., 59 (2014), 473-495.  doi: 10.1007/s10915-013-9770-4.  Google Scholar

[14]

L. Mu, J. Wang, X. Ye et al, A weak Galerkin finite element method for the Maxwell equations, J. Sci. Comput., 65 (2015), 363-386. doi: 10.1007/s10915-014-9964-4.  Google Scholar

[15]

N. C. NguyenJ. Peraire and B. Cockburn, A hybridizable discontinuous Galerkin method for Stokes flow, Comput. Methods Appl. Mech. Engrg., 199 (2010), 582-597.  doi: 10.1016/j.cma.2009.10.007.  Google Scholar

[16]

P.-A. Raviart and J. M. Thomas, A mixed finite element method for second order elliptic problems, in: I. Galligani, E. Magenes (Eds.), Mathematical Aspects of the Finite Element Method, in: Lecture Notes in Math., Springer, Berlin, 606 (1977), 292-315. Technical Report LA-UR-73-0479, Los Alamos Scientific Laboratory, Los Alamos, NM, 1973.  Google Scholar

[17]

J. Wang and X. Wang, Weak Galerkin finite element methods for elliptic PDEs(in Chinese), Sci. Sin. Math., 45 (2015), 1061-1092. Google Scholar

[18]

C. WangJ. WangR. Wang and R. Zhang, A locking-free weak Galerkin finite element method for elasticity problems in the primal formulation, J. Comput. Appl. Math., 307 (2016), 346-366.  doi: 10.1016/j.cam.2015.12.015.  Google Scholar

[19]

J. WangY. Wang and X. Ye, Unified a posteriori error estimator for finite element methods for the Stokes equations, Int. J. Numer. Anal. Model., 10 (2013), 551-570.   Google Scholar

[20]

R. WangX. WangQ. Zhai and R. Zhang, A weak Galerkin finite element scheme for solving the stationary Stokes equations, J. Comput. Appl. Math., 302 (2016), 171-185.  doi: 10.1016/j.cam.2016.01.025.  Google Scholar

[21]

J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.  doi: 10.1016/j.cam.2012.10.003.  Google Scholar

[22]

J. Wang and X. Ye, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comp., 83 (2014), 2101-2126.  doi: 10.1090/S0025-5718-2014-02852-4.  Google Scholar

[23]

J. Wang and X. Ye, A weak Galerkin finite element method for the stokes equations, Adv. Comput. Math., 42 (2016), 155-174.  doi: 10.1007/s10444-015-9415-2.  Google Scholar

[24]

J. Wang, X. Ye and R. Zhang, Basics of weak Garkin finite element methods(in Chinese), Math. Numer. Sin., 38 (2016), 289-308.  Google Scholar

[25]

X. WangQ. Zhai and R. Zhang, The weak Galerkin method for solving the incompressible Brinkman flow, J. Comput. Appl. Math., 307 (2016), 13-24.  doi: 10.1016/j.cam.2016.04.031.  Google Scholar

[26]

H. Xie, Q. Zhai and R. Zhang, The weak galerkin method for eigenvalue problems, arXiv: 1508.05304, (2015). Google Scholar

[27]

M. YangJ. Liu and Y. Lin, Pressure recovery for weakly over-penalized discontinuous Galerkin methods for the Stokes problem, J. Sci. Comput., 63 (2015), 699-715.  doi: 10.1007/s10915-014-9911-4.  Google Scholar

[28]

Q. ZhaiR. Zhang and L. Mu, A new weak Galerkin finite element scheme for the Brinkman model, Commun. Comput. Phys., 19 (2016), 1409-1434.  doi: 10.4208/cicp.scpde14.44s.  Google Scholar

[29]

Q. ZhaiR. Zhang and X. Wang, A hybridized weak Galerkin finite element scheme for the Stokes equations, Sci. China Math., 58 (2015), 2455-2472.  doi: 10.1007/s11425-015-5030-4.  Google Scholar

[30]

T. Zhang and L. Tang, A weak finite element method for elliptic problems in one space dimension, Appl. Math. Comput., 280 (2016), 1-10.  doi: 10.1016/j.amc.2016.01.018.  Google Scholar

[31]

R. Zhang and Q. Zhai, A weak Galerkin finite element scheme for the biharmonic equations by using polynomials of reduced order, J. Sci. Comput., 64 (2015), 559-585.  doi: 10.1007/s10915-014-9945-7.  Google Scholar

[32]

H. ZhangY. ZouY. XuQ. Zhai and H. Yue, Weak Galerkin finite element method for second order parabolic equations, Int. J. Numer. Anal. Model., 13 (2016), 525-544.   Google Scholar

show all references

References:
[1]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Springer, New York, 2008. doi: 10.1007/978-0-387-75934-0.  Google Scholar

[2]

Z. Chen, Finite Element Methods and Their Applications, Springer-Verlag Berlin, 2005.  Google Scholar

[3]

L. ChenJ. Wang and X. Ye, A posteriori error estimates for weak Galerkin finite element methods for second order elliptic problems, J. Sci. Comput., 59 (2014), 496-511.  doi: 10.1007/s10915-013-9771-3.  Google Scholar

[4]

B. CockburnJ. Gopalakrishnan and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 47 (2009), 1319-1365.  doi: 10.1137/070706616.  Google Scholar

[5]

A. HannukainenM. Juntunen and R. Stenberg, Computations with finite element methods for the Brinkman problem, Comput. Geosci., 15 (2011), 155-166.   Google Scholar

[6]

M. Juntunen and R. Stenberg, Analysis of finite element methods for the Brinkman problem, Calcolo, 47 (2010), 129-147.  doi: 10.1007/s10092-009-0017-6.  Google Scholar

[7]

J. Könnö and R. Stenberg, Numerical computations with $H$(div)-finite elements for the Brinkman problem, Comput. Geosci., 16 (2012), 139-158.  doi: 10.1007/s10596-011-9259-x.  Google Scholar

[8]

K. A. MardalX.-C. Tai and R. Winther, A robust finite element method for Darcy-Stokes flow, SIAM J. Numer. Anal., 40 (2002), 1605-1631.  doi: 10.1137/S0036142901383910.  Google Scholar

[9]

L. MuJ. WangY. Wang and X. Ye, A computational study of the weak Galerkin method for second-order elliptic equations, Numer. Algorithms, 63 (2013), 753-777.  doi: 10.1007/s11075-012-9651-1.  Google Scholar

[10]

L. MuJ. Wang and X. Ye, Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes, Numer. Methods PDE, 30 (2014), 1003-1029.  doi: 10.1002/num.21855.  Google Scholar

[11]

L. MuJ. Wang and X. Ye, A stable numerical algorithm for the Brinkman equations by weak Galerkin finite element methods, J. Comput. Phys., 273 (2014), 327-342.  doi: 10.1016/j.jcp.2014.04.017.  Google Scholar

[12]

L. MuJ. Wang and X. Ye, A hybridized formulation for the weak Galerkin mixed finite element method, J. Comput. Appl. Math., 307 (2016), 335-345.  doi: 10.1016/j.cam.2016.01.004.  Google Scholar

[13]

L. MuJ. WangX. Ye and S. Zhang, A $C^0$-weak Galerkin finite element method for the biharmonic equation, J. Sci. Comput., 59 (2014), 473-495.  doi: 10.1007/s10915-013-9770-4.  Google Scholar

[14]

L. Mu, J. Wang, X. Ye et al, A weak Galerkin finite element method for the Maxwell equations, J. Sci. Comput., 65 (2015), 363-386. doi: 10.1007/s10915-014-9964-4.  Google Scholar

[15]

N. C. NguyenJ. Peraire and B. Cockburn, A hybridizable discontinuous Galerkin method for Stokes flow, Comput. Methods Appl. Mech. Engrg., 199 (2010), 582-597.  doi: 10.1016/j.cma.2009.10.007.  Google Scholar

[16]

P.-A. Raviart and J. M. Thomas, A mixed finite element method for second order elliptic problems, in: I. Galligani, E. Magenes (Eds.), Mathematical Aspects of the Finite Element Method, in: Lecture Notes in Math., Springer, Berlin, 606 (1977), 292-315. Technical Report LA-UR-73-0479, Los Alamos Scientific Laboratory, Los Alamos, NM, 1973.  Google Scholar

[17]

J. Wang and X. Wang, Weak Galerkin finite element methods for elliptic PDEs(in Chinese), Sci. Sin. Math., 45 (2015), 1061-1092. Google Scholar

[18]

C. WangJ. WangR. Wang and R. Zhang, A locking-free weak Galerkin finite element method for elasticity problems in the primal formulation, J. Comput. Appl. Math., 307 (2016), 346-366.  doi: 10.1016/j.cam.2015.12.015.  Google Scholar

[19]

J. WangY. Wang and X. Ye, Unified a posteriori error estimator for finite element methods for the Stokes equations, Int. J. Numer. Anal. Model., 10 (2013), 551-570.   Google Scholar

[20]

R. WangX. WangQ. Zhai and R. Zhang, A weak Galerkin finite element scheme for solving the stationary Stokes equations, J. Comput. Appl. Math., 302 (2016), 171-185.  doi: 10.1016/j.cam.2016.01.025.  Google Scholar

[21]

J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103-115.  doi: 10.1016/j.cam.2012.10.003.  Google Scholar

[22]

J. Wang and X. Ye, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comp., 83 (2014), 2101-2126.  doi: 10.1090/S0025-5718-2014-02852-4.  Google Scholar

[23]

J. Wang and X. Ye, A weak Galerkin finite element method for the stokes equations, Adv. Comput. Math., 42 (2016), 155-174.  doi: 10.1007/s10444-015-9415-2.  Google Scholar

[24]

J. Wang, X. Ye and R. Zhang, Basics of weak Garkin finite element methods(in Chinese), Math. Numer. Sin., 38 (2016), 289-308.  Google Scholar

[25]

X. WangQ. Zhai and R. Zhang, The weak Galerkin method for solving the incompressible Brinkman flow, J. Comput. Appl. Math., 307 (2016), 13-24.  doi: 10.1016/j.cam.2016.04.031.  Google Scholar

[26]

H. Xie, Q. Zhai and R. Zhang, The weak galerkin method for eigenvalue problems, arXiv: 1508.05304, (2015). Google Scholar

[27]

M. YangJ. Liu and Y. Lin, Pressure recovery for weakly over-penalized discontinuous Galerkin methods for the Stokes problem, J. Sci. Comput., 63 (2015), 699-715.  doi: 10.1007/s10915-014-9911-4.  Google Scholar

[28]

Q. ZhaiR. Zhang and L. Mu, A new weak Galerkin finite element scheme for the Brinkman model, Commun. Comput. Phys., 19 (2016), 1409-1434.  doi: 10.4208/cicp.scpde14.44s.  Google Scholar

[29]

Q. ZhaiR. Zhang and X. Wang, A hybridized weak Galerkin finite element scheme for the Stokes equations, Sci. China Math., 58 (2015), 2455-2472.  doi: 10.1007/s11425-015-5030-4.  Google Scholar

[30]

T. Zhang and L. Tang, A weak finite element method for elliptic problems in one space dimension, Appl. Math. Comput., 280 (2016), 1-10.  doi: 10.1016/j.amc.2016.01.018.  Google Scholar

[31]

R. Zhang and Q. Zhai, A weak Galerkin finite element scheme for the biharmonic equations by using polynomials of reduced order, J. Sci. Comput., 64 (2015), 559-585.  doi: 10.1007/s10915-014-9945-7.  Google Scholar

[32]

H. ZhangY. ZouY. XuQ. Zhai and H. Yue, Weak Galerkin finite element method for second order parabolic equations, Int. J. Numer. Anal. Model., 13 (2016), 525-544.   Google Scholar

Table 1.  $ \mu = 1,a = 1 $ Error and convergence order of velocity function $ {\boldsymbol{u}} $ and pressure function $ p $
$ h $ $ ||| {\boldsymbol{e}}_h||| $ order $ \| {\boldsymbol{e}}_h\| $ order $ \|\varepsilon_h\| $ order $ \|{\boldsymbol{\delta}}_h\| $ order
1/4 5.63 1.06 4.67e-01 1.85
1/8 2.87 0.97 1.81e-01 2.55 2.70e-01 0.79 1.09 0.76
1/16 1.43 1.00 3.30e-02 2.45 1.39e-01 0.95 5.75e-01 0.93
1/32 6.89e-01 1.00 7.17e-03 2.20 7.01e-02 0.99 2.93e-01 0.97
1/64 7.17e-01 1.00 1.71e-03 2.06 3.51e-02 1.00 1.47e-01 0.99
$ h $ $ ||| {\boldsymbol{e}}_h||| $ order $ \| {\boldsymbol{e}}_h\| $ order $ \|\varepsilon_h\| $ order $ \|{\boldsymbol{\delta}}_h\| $ order
1/4 5.63 1.06 4.67e-01 1.85
1/8 2.87 0.97 1.81e-01 2.55 2.70e-01 0.79 1.09 0.76
1/16 1.43 1.00 3.30e-02 2.45 1.39e-01 0.95 5.75e-01 0.93
1/32 6.89e-01 1.00 7.17e-03 2.20 7.01e-02 0.99 2.93e-01 0.97
1/64 7.17e-01 1.00 1.71e-03 2.06 3.51e-02 1.00 1.47e-01 0.99
Table 2.  $ \mu = 1,a = 10^4 $ Error and convergence order of velocity function $ {\boldsymbol{u}} $ and pressure function $ p $
$ h $ $ ||| {\boldsymbol{e}}_h||| $ order $ \| {\boldsymbol{e}}_h\| $ order $ \|\varepsilon_h\| $ order $ \|{\boldsymbol{\delta}}_h\| $ order
1/4 4.03 1.16e-01 9.05e-01 3.89
1/8 2.24 0.85 1.94e-02 2.59 7.38e-01 0.29 2.18 0.84
1/16 1.30 0.79 7.38e-03 1.39 4.46e-01 0.73 1.08 1.01
1/32 6.89e-01 0.91 3.07e-03 1.27 2.37e-01 0.91 5.36e-01 1.01
1/64 3.53e-01 0.96 1.06e-03 1.53 1.09e-01 1.13 2.50e-01 1.10
$ h $ $ ||| {\boldsymbol{e}}_h||| $ order $ \| {\boldsymbol{e}}_h\| $ order $ \|\varepsilon_h\| $ order $ \|{\boldsymbol{\delta}}_h\| $ order
1/4 4.03 1.16e-01 9.05e-01 3.89
1/8 2.24 0.85 1.94e-02 2.59 7.38e-01 0.29 2.18 0.84
1/16 1.30 0.79 7.38e-03 1.39 4.46e-01 0.73 1.08 1.01
1/32 6.89e-01 0.91 3.07e-03 1.27 2.37e-01 0.91 5.36e-01 1.01
1/64 3.53e-01 0.96 1.06e-03 1.53 1.09e-01 1.13 2.50e-01 1.10
Table 3.  $ \mu = 0.01,a = 1 $ Error and convergence order of velocity function $ {\boldsymbol{u}} $ and pressure function $ p $
$ h $ $ ||| {\boldsymbol{e}}_h||| $ order $ \| {\boldsymbol{e}}_h\| $ order $ \|\varepsilon_h\| $ order $ \|{\boldsymbol{\delta}}_h\| $ order
1/4 9.87e-01 6.02e-01 7.87e-02 1.82e-01
1/8 5.06e-01 0.96 1.63e-01 1.88 5.84e-02 0.43 1.25e-01 0.54
1/16 2.47e-01 1.03 3.63e-02 2.17 3.56e-02 0.71 7.54e-02 0.73
1/32 1.22e-01 1.02 8.08e-03 2.17 1.92e-02 0.89 4.04e-02 0.90
1/64 6.06e-02 1.01 1.92e-03 2.07 9.80e-03 0.97 2.07e-02 0.97
$ h $ $ ||| {\boldsymbol{e}}_h||| $ order $ \| {\boldsymbol{e}}_h\| $ order $ \|\varepsilon_h\| $ order $ \|{\boldsymbol{\delta}}_h\| $ order
1/4 9.87e-01 6.02e-01 7.87e-02 1.82e-01
1/8 5.06e-01 0.96 1.63e-01 1.88 5.84e-02 0.43 1.25e-01 0.54
1/16 2.47e-01 1.03 3.63e-02 2.17 3.56e-02 0.71 7.54e-02 0.73
1/32 1.22e-01 1.02 8.08e-03 2.17 1.92e-02 0.89 4.04e-02 0.90
1/64 6.06e-02 1.01 1.92e-03 2.07 9.80e-03 0.97 2.07e-02 0.97
Table 4.  $ \mu = 0.01,a = 10^4 $ Error and convergence order of velocity function $ {\boldsymbol{u}} $ and pressure function $ p $
$ h $ $ ||| {\boldsymbol{e}}_h||| $ order $ \| {\boldsymbol{e}}_h\| $ order $ \|\varepsilon_h\| $ order $ \|{\boldsymbol{\delta}}_h\| $ order
1/4 7.33e-01 8.32e-02 1.20e-01 4.07e-01
1/8 4.41e-01 0.73 3.38e-02 1.30 9.01e-02 0.42 2.07e-01 0.98
1/16 2.36e-01 0.90 1.02e-02 1.73 4.70e-02 0.94 9.96e-02 1.06
1/32 1.20e-01 0.97 2.63e-03 1.96 2.15e-02 1.13 4.52e-02 1.14
1/64 6.04e-02 0.99 6.56e-03 2.00 1.01e-02 1.09 2.14e-02 1.08
$ h $ $ ||| {\boldsymbol{e}}_h||| $ order $ \| {\boldsymbol{e}}_h\| $ order $ \|\varepsilon_h\| $ order $ \|{\boldsymbol{\delta}}_h\| $ order
1/4 7.33e-01 8.32e-02 1.20e-01 4.07e-01
1/8 4.41e-01 0.73 3.38e-02 1.30 9.01e-02 0.42 2.07e-01 0.98
1/16 2.36e-01 0.90 1.02e-02 1.73 4.70e-02 0.94 9.96e-02 1.06
1/32 1.20e-01 0.97 2.63e-03 1.96 2.15e-02 1.13 4.52e-02 1.14
1/64 6.04e-02 0.99 6.56e-03 2.00 1.01e-02 1.09 2.14e-02 1.08
Table 5.  Comparison of the degrees of freedom between the weak Galerkin finite element method based on gradient divergence and Schur complement method
$ h $ dof dof schur
1/4 8.32e+02 6.40e+02
1/8 3.26e+03 2.50e+03
1/16 1.29e+03 9.86e+03
1/32 5.15e+04 3.92e+04
1/64 2.05e+05 1.56e+05
$ h $ dof dof schur
1/4 8.32e+02 6.40e+02
1/8 3.26e+03 2.50e+03
1/16 1.29e+03 9.86e+03
1/32 5.15e+04 3.92e+04
1/64 2.05e+05 1.56e+05
Table 6.  $ \mu = 1,a = 1 $ Error and convergence order of velocity function $ {\boldsymbol{u}} $ and pressure function $ p $
$ h $ $ ||| {\boldsymbol{e}}_h||| $ order $ \| {\boldsymbol{e}}_h\| $ order $ \|\varepsilon_h\| $ order $ \| {\boldsymbol{\delta}}_h \| $ order
1/4 5.79 1.21 5.54e-01 8.08e-01
1/8 2.93 0.98 2.23e-01 2.44 3.00e-01 0.89 3.08e-01 1.39
1/16 1.46 1.40 4.74e-02 2.24 1.48e-01 1.02 9.44e-02 1.71
1/32 7.32e-01 1.00 1.13e-03 2.07 7.33e-02 1.02 2.64e-02 1.84
1/64 3.66e-01 1.00 2.80e-03 1.92 3.65e-02 1.01 7.19e-03 1.87
$ h $ $ ||| {\boldsymbol{e}}_h||| $ order $ \| {\boldsymbol{e}}_h\| $ order $ \|\varepsilon_h\| $ order $ \| {\boldsymbol{\delta}}_h \| $ order
1/4 5.79 1.21 5.54e-01 8.08e-01
1/8 2.93 0.98 2.23e-01 2.44 3.00e-01 0.89 3.08e-01 1.39
1/16 1.46 1.40 4.74e-02 2.24 1.48e-01 1.02 9.44e-02 1.71
1/32 7.32e-01 1.00 1.13e-03 2.07 7.33e-02 1.02 2.64e-02 1.84
1/64 3.66e-01 1.00 2.80e-03 1.92 3.65e-02 1.01 7.19e-03 1.87
Table 7.  $ \mu = 1,a = 10^3 $ Error and convergence order of velocity function $ {\boldsymbol{u}} $ and pressure function $ p $
$ h $ $ ||| {\boldsymbol{e}}_h||| $ order $ \| {\boldsymbol{e}}_h\| $ order $ \|\varepsilon_h\| $ order $ \|{\boldsymbol{\delta}}_h\| $ order
1/4 3.51 1.90e-01 8.61e-01 3.14
1/8 2.36 0.57 6.20e-02 1.62 6.87e-01 0.33 1.70 0.89
1/16 1.35 0.80 2.45e-02 1.34 3.76e-01 0.87 7.73e-01 1.14
1/32 7.14e-01 0.92 8.46e-03 1.54 1.59e-01 1.24 2.97e-01 1.38
1/64 3.64e-01 0.97 2.44e-03 1.79 5.76e-02 1.47 9.30e-02 1.68
$ h $ $ ||| {\boldsymbol{e}}_h||| $ order $ \| {\boldsymbol{e}}_h\| $ order $ \|\varepsilon_h\| $ order $ \|{\boldsymbol{\delta}}_h\| $ order
1/4 3.51 1.90e-01 8.61e-01 3.14
1/8 2.36 0.57 6.20e-02 1.62 6.87e-01 0.33 1.70 0.89
1/16 1.35 0.80 2.45e-02 1.34 3.76e-01 0.87 7.73e-01 1.14
1/32 7.14e-01 0.92 8.46e-03 1.54 1.59e-01 1.24 2.97e-01 1.38
1/64 3.64e-01 0.97 2.44e-03 1.79 5.76e-02 1.47 9.30e-02 1.68
Table 8.  $ \mu = 0.01,a = 1 $ Error and convergence order of velocity function $ {\boldsymbol{u}} $ and pressure function $ p $
$ h $ $ ||| {\boldsymbol{e}}_h||| $ order $ \| {\boldsymbol{e}}_h\| $ order $ \|\varepsilon_h\| $ order $ \|{\boldsymbol{\delta}}_h\| $ order
1/4 1.14 6.87e-01 3.45e-02 1.02e-01
1/8 6.46e-01 0.82 2.31e-01 1.57 1.70e-02 1.02 5.39e-02 0.92
1/16 3.41e-01 0.92 7.23e-02 1.67 7.52-03 1.18 2.28e-02 1.24
1/32 1.75e-01 0.96 2.05e-02 1.82 2.85e-02 1.40 8.34e-03 1.45
1/64 8.83e-02 0.98 5.46e-03 1.91 1.01e-03 1.50 2.82e-03 1.57
$ h $ $ ||| {\boldsymbol{e}}_h||| $ order $ \| {\boldsymbol{e}}_h\| $ order $ \|\varepsilon_h\| $ order $ \|{\boldsymbol{\delta}}_h\| $ order
1/4 1.14 6.87e-01 3.45e-02 1.02e-01
1/8 6.46e-01 0.82 2.31e-01 1.57 1.70e-02 1.02 5.39e-02 0.92
1/16 3.41e-01 0.92 7.23e-02 1.67 7.52-03 1.18 2.28e-02 1.24
1/32 1.75e-01 0.96 2.05e-02 1.82 2.85e-02 1.40 8.34e-03 1.45
1/64 8.83e-02 0.98 5.46e-03 1.91 1.01e-03 1.50 2.82e-03 1.57
Table 9.  $ \mu = 0.01,a = 10^3 $ Error and convergence order of velocity function $ {\boldsymbol{u}} $ and pressure function $ p $
$ h $ $ ||| {\boldsymbol{e}}_h||| $ order $ \| {\boldsymbol{e}}_h\| $ order $ \|\varepsilon_h\| $ order $ \|{\boldsymbol{\delta}}_h\| $ order
1/4 1.06 3.22e-01 7.91e-02 4.07e-01
1/8 6.21e-01 0.78 1.41e-02 1.19 5.52e-02 0.51 1.60e-01 0.44
1/16 3.33e-01 0.90 5.74e-02 1.30 2.97e-02 0.90 1.18e-01 0.89
1/32 1.73e-01 0.94 1.88e-02 1.61 1.14e-02 1.38 6.36e-02 1.37
1/64 8.81e-02 0.95 5.29e-03 1.91 3.47e-03 1.93 7.56e-02 1.51
$ h $ $ ||| {\boldsymbol{e}}_h||| $ order $ \| {\boldsymbol{e}}_h\| $ order $ \|\varepsilon_h\| $ order $ \|{\boldsymbol{\delta}}_h\| $ order
1/4 1.06 3.22e-01 7.91e-02 4.07e-01
1/8 6.21e-01 0.78 1.41e-02 1.19 5.52e-02 0.51 1.60e-01 0.44
1/16 3.33e-01 0.90 5.74e-02 1.30 2.97e-02 0.90 1.18e-01 0.89
1/32 1.73e-01 0.94 1.88e-02 1.61 1.14e-02 1.38 6.36e-02 1.37
1/64 8.81e-02 0.95 5.29e-03 1.91 3.47e-03 1.93 7.56e-02 1.51
Table 10.  Comparison of the degrees of freedom between the weak Galerkin finite element method based on gradient divergence and Schur complement method
$ h $ dof dof Schur
1/4 7.20e+02 5.28e+02
1/8 2.85e+03 2.08e+03
1/16 1.33e+03 8.26e+03
1/32 4.52e+04 3.29e+04
1/64 1.80e+05 1.31e+05
$ h $ dof dof Schur
1/4 7.20e+02 5.28e+02
1/8 2.85e+03 2.08e+03
1/16 1.33e+03 8.26e+03
1/32 4.52e+04 3.29e+04
1/64 1.80e+05 1.31e+05
[1]

Wenjing Liu, Rong Yang, Xin-Guang Yang. Dynamics of a 3D Brinkman-Forchheimer equation with infinite delay. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021052

[2]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[3]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[4]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[5]

Shoichi Hasegawa, Norihisa Ikoma, Tatsuki Kawakami. On weak solutions to a fractional Hardy–Hénon equation: Part I: Nonexistence. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021033

[6]

Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, 2021, 14 (2) : 389-406. doi: 10.3934/krm.2021009

[7]

Matthias Ebenbeck, Harald Garcke, Robert Nürnberg. Cahn–Hilliard–Brinkman systems for tumour growth. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021034

[8]

Zhigang Pan, Yiqiu Mao, Quan Wang, Yuchen Yang. Transitions and bifurcations of Darcy-Brinkman-Marangoni convection. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021106

[9]

Mikhail Dokuchaev, Guanglu Zhou, Song Wang. A modification of Galerkin's method for option pricing. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021077

[10]

Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021030

[11]

Jihoon Lee, Ngocthach Nguyen. Flows with the weak two-sided limit shadowing property. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021040

[12]

Matheus C. Bortolan, José Manuel Uzal. Upper and weak-lower semicontinuity of pullback attractors to impulsive evolution processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3667-3692. doi: 10.3934/dcdsb.2020252

[13]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[14]

Guodong Wang, Bijun Zuo. Energy equality for weak solutions to the 3D magnetohydrodynamic equations in a bounded domain. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021078

[15]

Qiao Liu. Partial regularity and the Minkowski dimension of singular points for suitable weak solutions to the 3D simplified Ericksen–Leslie system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021041

[16]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091

[17]

Miroslav Bulíček, Victoria Patel, Endre Süli, Yasemin Şengül. Existence of large-data global weak solutions to a model of a strain-limiting viscoelastic body. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021053

[18]

Anhui Gu. Weak pullback mean random attractors for non-autonomous $ p $-Laplacian equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3863-3878. doi: 10.3934/dcdsb.2020266

[19]

Lianbing She, Nan Liu, Xin Li, Renhai Wang. Three types of weak pullback attractors for lattice pseudo-parabolic equations driven by locally Lipschitz noise. Electronic Research Archive, , () : -. doi: 10.3934/era.2021028

[20]

Lifen Jia, Wei Dai. Uncertain spring vibration equation. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021073

 Impact Factor: 0.263

Article outline

Figures and Tables

[Back to Top]