# American Institute of Mathematical Sciences

• Previous Article
Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM
• ERA Home
• This Issue
• Next Article
Hybridized weak Galerkin finite element methods for Brinkman equations
August  2021, 29(3): 2517-2532. doi: 10.3934/era.2020127

## A four-field mixed finite element method for Biot's consolidation problems

 1 School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China 2 Department of Mathematical Sciences, George Mason University, Fairfax, VA 22030, USA 3 Division of Mathematical Sciences, National Science Foundation, Alexandria, VA 22314, USA

* Corresponding author: Junping Wang

Received  August 2020 Published  August 2021 Early access  December 2020

This article presents a four-field mixed finite element method for Biot's consolidation problems, where the four fields include the displacement, total stress, flux and pressure for the porous medium component of the modeling system. The mixed finite element method involving Raviart-Thomas element is used for the fluid flow equation, while the Crank-Nicolson scheme is employed for the time discretization. The main contribution of this work is the derivation of the optimal order error estimates for semi-discrete and fully-discrete schemes for the unknowns in energy norm or $L^2$ norm. Numerical experiments are presented to validate the theoretical results.

Citation: Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, 2021, 29 (3) : 2517-2532. doi: 10.3934/era.2020127
##### References:
 [1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2 Edition, Academic Press, New York, 2003.   Google Scholar [2] I. Babuška, The finite element method with penalty, Math. Comp., 27 (1973), 221-228.  doi: 10.1090/S0025-5718-1973-0351118-5.  Google Scholar [3] L. Berger, R. Bordas, D. Kay and S. Tavener, Stabilized lowest-order finite element approximation for linear three-field poroelasticity, SIAM J. Sci. Comput., 37 (2015), A2222–A2245. doi: 10.1137/15M1009822.  Google Scholar [4] M. A. Biot, General theory of three-dimensional consolidation, J. Appl. Phys., 12 (1941), 155-164.  doi: 10.1063/1.1712886.  Google Scholar [5] M. A. Biot, Theory of elasticity and consolidation for a porous anisotropic solid, J. Appl. Phys., 26 (1955), 182-185.  doi: 10.1063/1.1721956.  Google Scholar [6] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Third edition. Texts in Applied Mathematics, 15. Springer, New York, 2008. doi: 10.1007/978-0-387-75934-0.  Google Scholar [7] F. Brezzi, On the existence, uniqueness, and approximation of saddle point problems arising from Lagrange multipliers, RAIRO, 8 (1974), 129-151.   Google Scholar [8] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, 15. Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-3172-1.  Google Scholar [9] X. Hu, C. Rodrigo, F. J. Gaspar and L. T. Zikatanov, A nonconforming finite element method for the Biot's consolidation model in poroelasticity, J. Comput. Appl. Math., 310 (2017), 143-154.  doi: 10.1016/j.cam.2016.06.003.  Google Scholar [10] J. Korsawe and G. Starke, A least-squares mixed finite element method for Biot's consolidation problem in porous media, SIAM J. Numer. Anal., 43 (2005), 318-339.  doi: 10.1137/S0036142903432929.  Google Scholar [11] S. Kumar, R. Oyarz$\acute{u}$a, R. Ruiz-Baier and R. Sandilya, Conservative discontinuous finite volume and mixed schemes for a new four-field formulation in poroelasticity, ESAIM Math. Model. Numer. Anal., 54 (2020), 273-299.  doi: 10.1051/m2an/2019063.  Google Scholar [12] J. J. Lee, Robust error analysis of coupled mixed methods for Biot's consolidation model, J. Sci. Comput., 69 (2016), 610-632.  doi: 10.1007/s10915-016-0210-0.  Google Scholar [13] J. J. Lee, K.-A. Mardal and R. Winther, Parameter-robust discretization and preconditioning of Biot's consolidation model, SIAM J. Sci. Comput., 39 (2017), A1–A24. doi: 10.1137/15M1029473.  Google Scholar [14] J. J. Lee, E. Piersanti, K.-A. Mardal and M. E. Rognes, A mixed finite element method for nearly incompressible multiple-network poroelasticity, SIAM J. Sci. Comput., 41 (2019), A722–A747. doi: 10.1137/18M1182395.  Google Scholar [15] R. Leiderman, P. Barbone, A. Oberai and J. Bamber, Coupling between elastic strain and interstitial fluid flow: ramifications for poroelastic imaging, Phys. Med. Biol., 51 (2006), 6291-6313.   Google Scholar [16] M. A. Murad and A. F. D. Loula, Improved accuracy in finite element analysis of Biot's consolidation problem, Comput. Methods Appl. Mech. Engrg., 95 (1992), 359-382.  doi: 10.1016/0045-7825(92)90193-N.  Google Scholar [17] M. A. Murad and A. F. D. Loula, On stability and convergence of finite element approximations of Biot's consolidation problem, Internat. J. Numer. Methods Engrg., 37 (1994), 645-667.  doi: 10.1002/nme.1620370407.  Google Scholar [18] M. A. Murad, V. Thom$\acute{e}$e and A. F. D. Loula, Asymptotic behavior of semidiscrete finite-element approximations of Biot's consolidation problem, SIAM J. Numer. Anal., 33 (1996), 1065-1083.  doi: 10.1137/0733052.  Google Scholar [19] J.-C. Nédélec, Mixed finite elements in ${\bf R}^{3}$, Numer. Math., 35 (1980), 315-341.  doi: 10.1007/BF01396415.  Google Scholar [20] P. A. Netti, L. T. Baxter, Y. Boucher, R. Skalak and R. K. Jain, Macro-and microscopic fluid transport in living tissues: Application to solid tumors, AIChE Journal of Bioengineering Food, and Natural Products, 43 (1997), 818-834.  doi: 10.1002/aic.690430327.  Google Scholar [21] J. A. Nitsche, On Korn's second inequality, RAIRO Anal. Numér., 15 (1981), 237-248.  doi: 10.1051/m2an/1981150302371.  Google Scholar [22] R. Oyarz$\acute{u}$a and R. Ruiz-Baier, Locking-free finite element methods for poroelasticity, SIAM J. Numer. Anal., 54 (2016), 2951-2973.  doi: 10.1137/15M1050082.  Google Scholar [23] P. J. Phillips and M. F. Wheeler, A coupling of mixed and continuous Galerkin finite element methods for poroelasticity Ⅰ: The continuous in time case, Comput. Geosci., 11 (2007), 131-144.  doi: 10.1007/s10596-007-9045-y.  Google Scholar [24] P. J. Phillips and M. F. Wheeler, A coupling of mixed and continuous Galerkin finite element methods for poroelasticity Ⅱ: The discrete-in-time case, Comput. Geosci., 11 (2007), 145-158.  doi: 10.1007/s10596-007-9044-z.  Google Scholar [25] W. Qi, P. Seshaiyer and J. Wang, Finite element method with the total stress variable for Biot's consolidation model, 2020, https://arXiv.org/abs/2008.01278. Google Scholar [26] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer Series in Computational Mathematics, 23. Springer-Verlag, Berlin, 1994.  Google Scholar [27] P.-A. Raviart and J. M. Thomas, A mixed finite element method for second order elliptic problems, Mathematical Aspects of the Finite Element Method (1. Galligani, E. Magenes, eds.), Lectures Notes in Math., Springer-Verlag, New York, 606 (1977), 292–315.  Google Scholar [28] S.-Y. Yi, Convergence analysis of a new mixed finite element method for Biot's consolidation model, Numer. Methods Partial Differential Equations, 30 (2014), 1189-1210.  doi: 10.1002/num.21865.  Google Scholar

show all references

##### References:
 [1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2 Edition, Academic Press, New York, 2003.   Google Scholar [2] I. Babuška, The finite element method with penalty, Math. Comp., 27 (1973), 221-228.  doi: 10.1090/S0025-5718-1973-0351118-5.  Google Scholar [3] L. Berger, R. Bordas, D. Kay and S. Tavener, Stabilized lowest-order finite element approximation for linear three-field poroelasticity, SIAM J. Sci. Comput., 37 (2015), A2222–A2245. doi: 10.1137/15M1009822.  Google Scholar [4] M. A. Biot, General theory of three-dimensional consolidation, J. Appl. Phys., 12 (1941), 155-164.  doi: 10.1063/1.1712886.  Google Scholar [5] M. A. Biot, Theory of elasticity and consolidation for a porous anisotropic solid, J. Appl. Phys., 26 (1955), 182-185.  doi: 10.1063/1.1721956.  Google Scholar [6] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Third edition. Texts in Applied Mathematics, 15. Springer, New York, 2008. doi: 10.1007/978-0-387-75934-0.  Google Scholar [7] F. Brezzi, On the existence, uniqueness, and approximation of saddle point problems arising from Lagrange multipliers, RAIRO, 8 (1974), 129-151.   Google Scholar [8] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, 15. Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-3172-1.  Google Scholar [9] X. Hu, C. Rodrigo, F. J. Gaspar and L. T. Zikatanov, A nonconforming finite element method for the Biot's consolidation model in poroelasticity, J. Comput. Appl. Math., 310 (2017), 143-154.  doi: 10.1016/j.cam.2016.06.003.  Google Scholar [10] J. Korsawe and G. Starke, A least-squares mixed finite element method for Biot's consolidation problem in porous media, SIAM J. Numer. Anal., 43 (2005), 318-339.  doi: 10.1137/S0036142903432929.  Google Scholar [11] S. Kumar, R. Oyarz$\acute{u}$a, R. Ruiz-Baier and R. Sandilya, Conservative discontinuous finite volume and mixed schemes for a new four-field formulation in poroelasticity, ESAIM Math. Model. Numer. Anal., 54 (2020), 273-299.  doi: 10.1051/m2an/2019063.  Google Scholar [12] J. J. Lee, Robust error analysis of coupled mixed methods for Biot's consolidation model, J. Sci. Comput., 69 (2016), 610-632.  doi: 10.1007/s10915-016-0210-0.  Google Scholar [13] J. J. Lee, K.-A. Mardal and R. Winther, Parameter-robust discretization and preconditioning of Biot's consolidation model, SIAM J. Sci. Comput., 39 (2017), A1–A24. doi: 10.1137/15M1029473.  Google Scholar [14] J. J. Lee, E. Piersanti, K.-A. Mardal and M. E. Rognes, A mixed finite element method for nearly incompressible multiple-network poroelasticity, SIAM J. Sci. Comput., 41 (2019), A722–A747. doi: 10.1137/18M1182395.  Google Scholar [15] R. Leiderman, P. Barbone, A. Oberai and J. Bamber, Coupling between elastic strain and interstitial fluid flow: ramifications for poroelastic imaging, Phys. Med. Biol., 51 (2006), 6291-6313.   Google Scholar [16] M. A. Murad and A. F. D. Loula, Improved accuracy in finite element analysis of Biot's consolidation problem, Comput. Methods Appl. Mech. Engrg., 95 (1992), 359-382.  doi: 10.1016/0045-7825(92)90193-N.  Google Scholar [17] M. A. Murad and A. F. D. Loula, On stability and convergence of finite element approximations of Biot's consolidation problem, Internat. J. Numer. Methods Engrg., 37 (1994), 645-667.  doi: 10.1002/nme.1620370407.  Google Scholar [18] M. A. Murad, V. Thom$\acute{e}$e and A. F. D. Loula, Asymptotic behavior of semidiscrete finite-element approximations of Biot's consolidation problem, SIAM J. Numer. Anal., 33 (1996), 1065-1083.  doi: 10.1137/0733052.  Google Scholar [19] J.-C. Nédélec, Mixed finite elements in ${\bf R}^{3}$, Numer. Math., 35 (1980), 315-341.  doi: 10.1007/BF01396415.  Google Scholar [20] P. A. Netti, L. T. Baxter, Y. Boucher, R. Skalak and R. K. Jain, Macro-and microscopic fluid transport in living tissues: Application to solid tumors, AIChE Journal of Bioengineering Food, and Natural Products, 43 (1997), 818-834.  doi: 10.1002/aic.690430327.  Google Scholar [21] J. A. Nitsche, On Korn's second inequality, RAIRO Anal. Numér., 15 (1981), 237-248.  doi: 10.1051/m2an/1981150302371.  Google Scholar [22] R. Oyarz$\acute{u}$a and R. Ruiz-Baier, Locking-free finite element methods for poroelasticity, SIAM J. Numer. Anal., 54 (2016), 2951-2973.  doi: 10.1137/15M1050082.  Google Scholar [23] P. J. Phillips and M. F. Wheeler, A coupling of mixed and continuous Galerkin finite element methods for poroelasticity Ⅰ: The continuous in time case, Comput. Geosci., 11 (2007), 131-144.  doi: 10.1007/s10596-007-9045-y.  Google Scholar [24] P. J. Phillips and M. F. Wheeler, A coupling of mixed and continuous Galerkin finite element methods for poroelasticity Ⅱ: The discrete-in-time case, Comput. Geosci., 11 (2007), 145-158.  doi: 10.1007/s10596-007-9044-z.  Google Scholar [25] W. Qi, P. Seshaiyer and J. Wang, Finite element method with the total stress variable for Biot's consolidation model, 2020, https://arXiv.org/abs/2008.01278. Google Scholar [26] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer Series in Computational Mathematics, 23. Springer-Verlag, Berlin, 1994.  Google Scholar [27] P.-A. Raviart and J. M. Thomas, A mixed finite element method for second order elliptic problems, Mathematical Aspects of the Finite Element Method (1. Galligani, E. Magenes, eds.), Lectures Notes in Math., Springer-Verlag, New York, 606 (1977), 292–315.  Google Scholar [28] S.-Y. Yi, Convergence analysis of a new mixed finite element method for Biot's consolidation model, Numer. Methods Partial Differential Equations, 30 (2014), 1189-1210.  doi: 10.1002/num.21865.  Google Scholar
Convergence at $t^n = 1$ when $\tau = h$ for $([P_2]^2,P_0,P_0, RT_0)$: Example 1 with homogeneous Dirichlet boundary condition
 h $|||e_{\bf{u}}^n|||$ $||e_{\bf{u}}^n||$ $||e_z^n||$ $||e_p^n||$ $||e_{{\bf{q}}}^n||$ error order error order error order error order error order 1/8 1.0970e+00 3.6212e-02 9.8472e-04 1.0326e-03 2.6009e-04 1/16 5.5495e-01 0.98 9.1920e-03 1.98 2.9921e-04 1.72 3.4406e-04 1.59 1.1141e-04 1.22 1/32 2.7839e-01 1.00 2.3020e-03 2.00 1.0632e-04 1.49 1.1722e-04 1.55 3.6399e-05 1.61 1/64 1.3934e-01 1.00 5.7569e-04 2.00 2.8200e-05 1.92 3.0540e-05 1.94 8.6783e-06 2.02
 h $|||e_{\bf{u}}^n|||$ $||e_{\bf{u}}^n||$ $||e_z^n||$ $||e_p^n||$ $||e_{{\bf{q}}}^n||$ error order error order error order error order error order 1/8 1.0970e+00 3.6212e-02 9.8472e-04 1.0326e-03 2.6009e-04 1/16 5.5495e-01 0.98 9.1920e-03 1.98 2.9921e-04 1.72 3.4406e-04 1.59 1.1141e-04 1.22 1/32 2.7839e-01 1.00 2.3020e-03 2.00 1.0632e-04 1.49 1.1722e-04 1.55 3.6399e-05 1.61 1/64 1.3934e-01 1.00 5.7569e-04 2.00 2.8200e-05 1.92 3.0540e-05 1.94 8.6783e-06 2.02
Convergence at $t^n = 1$ when $h = 1/512$ for $([P_2]^2,P_0,P_0, RT_0)$: Example 1 with homogeneous Dirichlet boundary condition
 $\tau$ $|||e_{\bf{u}}^n|||$ $||e_{\bf{u}}^n||$ $||e_z^n||$ $|| e_p^n||$ $||e_{{\bf{q}}}^n||$ error order error order error order error order 1 1.9294e+00 3.1761e-01 5.6108e-02 6.9489e-02 1.4643e-02 1/2 4.7787e-01 2.01 7.8199e-02 2.02 1.3792e-02 2.02 1.7129e-02 2.02 3.3258e-03 2.14 1/4 1.2053e-01 1.99 1.9539e-02 2.00 3.4454e-03 2.00 4.2784e-03 2.00 8.3143e-04 2.00 1/8 3.4530e-02 1.80 4.8821e-03 2.00 8.6090e-04 2.00 1.0691e-03 2.00 2.0775e-04 2.00
 $\tau$ $|||e_{\bf{u}}^n|||$ $||e_{\bf{u}}^n||$ $||e_z^n||$ $|| e_p^n||$ $||e_{{\bf{q}}}^n||$ error order error order error order error order 1 1.9294e+00 3.1761e-01 5.6108e-02 6.9489e-02 1.4643e-02 1/2 4.7787e-01 2.01 7.8199e-02 2.02 1.3792e-02 2.02 1.7129e-02 2.02 3.3258e-03 2.14 1/4 1.2053e-01 1.99 1.9539e-02 2.00 3.4454e-03 2.00 4.2784e-03 2.00 8.3143e-04 2.00 1/8 3.4530e-02 1.80 4.8821e-03 2.00 8.6090e-04 2.00 1.0691e-03 2.00 2.0775e-04 2.00
Convergence at $t^n = 1$ when $\tau = h$ for $([P_2]^2,P_0,P_0, RT_0)$: Example 2 with non-homogeneous Dirichlet boundary data
 h $|||e_{\bf{u}}^n|||$ $||e_{\bf{u}}^n||$ $||e_z^n||$ $||e_p^n||$ $||e_{{\bf{q}}}^n||$ error order error order error order error order error order 1/8 1.6784e-02 5.6421e-04 1.9561e-02 1.2901e-03 6.7991e-03 1/16 8.6688e-03 0.95 1.4538e-04 1.96 5.3817e-03 1.86 4.4940e-04 1.52 2.3988e-03 1.50 1/32 4.3990e-03 0.98 3.6669e-05 1.99 1.4495e-03 1.89 9.9263e-05 2.18 7.0921e-04 1.76 1/64 2.2148e-03 0.99 9.1937e-06 2.00 3.9949e-04 1.86 2.2901e-05 2.12 2.2685e-04 1.64
 h $|||e_{\bf{u}}^n|||$ $||e_{\bf{u}}^n||$ $||e_z^n||$ $||e_p^n||$ $||e_{{\bf{q}}}^n||$ error order error order error order error order error order 1/8 1.6784e-02 5.6421e-04 1.9561e-02 1.2901e-03 6.7991e-03 1/16 8.6688e-03 0.95 1.4538e-04 1.96 5.3817e-03 1.86 4.4940e-04 1.52 2.3988e-03 1.50 1/32 4.3990e-03 0.98 3.6669e-05 1.99 1.4495e-03 1.89 9.9263e-05 2.18 7.0921e-04 1.76 1/64 2.2148e-03 0.99 9.1937e-06 2.00 3.9949e-04 1.86 2.2901e-05 2.12 2.2685e-04 1.64
Convergence at $t^n = 1$ when $\tau = h$ for $([P_2]^2,P_0,P_0, RT_0)$: Example 2 with mixed Dirichlet and Neumann boundary conditions
 h $|||e_{\bf{u}}^n|||$ $||e_{\bf{u}}^n||$ $||e_z^n||$ $||e_p^n||$ $||e_{{\bf{q}}}^n||$ error order error order error order error order error order 1/8 1.6863e-02 5.3041e-04 2.0902e-02 1.1893e-03 6.4497e-03 1/16 8.6834e-03 0.96 1.3557e-04 1.97 5.5918e-03 1.90 2.8353e-04 2.07 1.9159e-03 1.75 1/32 4.4019e-03 0.98 3.4070e-05 1.99 1.4745e-03 1.92 3.4283e-05 3.05 4.1519e-04 2.21 1/64 2.2155e-03 0.99 8.5408e-06 2.00 4.0097e-04 1.88 5.5825e-06 2.62 9.2273e-05 2.17
 h $|||e_{\bf{u}}^n|||$ $||e_{\bf{u}}^n||$ $||e_z^n||$ $||e_p^n||$ $||e_{{\bf{q}}}^n||$ error order error order error order error order error order 1/8 1.6863e-02 5.3041e-04 2.0902e-02 1.1893e-03 6.4497e-03 1/16 8.6834e-03 0.96 1.3557e-04 1.97 5.5918e-03 1.90 2.8353e-04 2.07 1.9159e-03 1.75 1/32 4.4019e-03 0.98 3.4070e-05 1.99 1.4745e-03 1.92 3.4283e-05 3.05 4.1519e-04 2.21 1/64 2.2155e-03 0.99 8.5408e-06 2.00 4.0097e-04 1.88 5.5825e-06 2.62 9.2273e-05 2.17
Convergence at $t^n = 1$ when $\tau = h$ for $([P_2]^2,P_1,P_0, RT_0)$: Example 2 with non-homogeneous Dirichlet boundary data
 h $|||e_{\bf{u}}^n|||$ $||e_{\bf{u}}^n||$ $||e_z^n||$ $||e_p^n||$ $||e_{{\bf{q}}}^n||$ error order error order error order error order error order 1/8 3.1646e-04 1.3523e-05 5.1888e-02 3.2782e-03 1.6614e-02 1/16 5.1165e-05 2.63 4.1755e-06 1.70 1.3362e-02 1.96 1.1749e-03 1.48 6.1427e-03 1.44 1/32 1.0911e-05 2.23 7.0520e-07 2.57 3.3167e-03 2.01 2.5536e-04 2.20 1.8480e-03 1.73 1/64 3.3563e-06 1.70 1.2494e-07 2.50 8.2329e-04 2.01 5.7363e-05 2.15 6.1243e-04 1.59
 h $|||e_{\bf{u}}^n|||$ $||e_{\bf{u}}^n||$ $||e_z^n||$ $||e_p^n||$ $||e_{{\bf{q}}}^n||$ error order error order error order error order error order 1/8 3.1646e-04 1.3523e-05 5.1888e-02 3.2782e-03 1.6614e-02 1/16 5.1165e-05 2.63 4.1755e-06 1.70 1.3362e-02 1.96 1.1749e-03 1.48 6.1427e-03 1.44 1/32 1.0911e-05 2.23 7.0520e-07 2.57 3.3167e-03 2.01 2.5536e-04 2.20 1.8480e-03 1.73 1/64 3.3563e-06 1.70 1.2494e-07 2.50 8.2329e-04 2.01 5.7363e-05 2.15 6.1243e-04 1.59
Convergence at $t^n = 1$ when $\tau = h$ for $([P_2]^2,P_1,P_0, RT_0)$: Example 2 with mixed Dirichlet and Neumann boundary data
 h $|||e_{\bf{u}}^n|||$ $||e_{\bf{u}}^n||$ $||e_z^n||$ $||e_p^n||$ $||e_{{\bf{q}}}^n||$ error order error order error order error order error order 1/8 5.4994e-04 2.8159e-05 5.1568e-02 3.1130e-03 1.4807e-02 1/16 9.7846e-05 2.49 6.4894e-06 2.12 1.3027e-02 1.98 7.7273e-04 2.01 4.4788e-03 1.73 1/32 1.8542e-05 2.40 8.1614e-07 2.99 3.1901e-03. 2.03 9.6270e-05 3.00 8.9236e-04 2.33 1/64 4.2955e-06 2.11 1.0693e-07 2.93 7.8825e-04. 2.02 1.1182e-05 3.11 1.7505e-04 2.35
 h $|||e_{\bf{u}}^n|||$ $||e_{\bf{u}}^n||$ $||e_z^n||$ $||e_p^n||$ $||e_{{\bf{q}}}^n||$ error order error order error order error order error order 1/8 5.4994e-04 2.8159e-05 5.1568e-02 3.1130e-03 1.4807e-02 1/16 9.7846e-05 2.49 6.4894e-06 2.12 1.3027e-02 1.98 7.7273e-04 2.01 4.4788e-03 1.73 1/32 1.8542e-05 2.40 8.1614e-07 2.99 3.1901e-03. 2.03 9.6270e-05 3.00 8.9236e-04 2.33 1/64 4.2955e-06 2.11 1.0693e-07 2.93 7.8825e-04. 2.02 1.1182e-05 3.11 1.7505e-04 2.35
 [1] Yingwen Guo, Yinnian He. Fully discrete finite element method based on second-order Crank-Nicolson/Adams-Bashforth scheme for the equations of motion of Oldroyd fluids of order one. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2583-2609. doi: 10.3934/dcdsb.2015.20.2583 [2] Dongho Kim, Eun-Jae Park. Adaptive Crank-Nicolson methods with dynamic finite-element spaces for parabolic problems. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 873-886. doi: 10.3934/dcdsb.2008.10.873 [3] Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic & Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59 [4] Sondre Tesdal Galtung. A convergent Crank-Nicolson Galerkin scheme for the Benjamin-Ono equation. Discrete & Continuous Dynamical Systems, 2018, 38 (3) : 1243-1268. doi: 10.3934/dcds.2018051 [5] Yoshiho Akagawa, Elliott Ginder, Syota Koide, Seiro Omata, Karel Svadlenka. A Crank-Nicolson type minimization scheme for a hyperbolic free boundary problem. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021153 [6] Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222 [7] Hao Wang, Wei Yang, Yunqing Huang. An adaptive edge finite element method for the Maxwell's equations in metamaterials. Electronic Research Archive, 2020, 28 (2) : 961-976. doi: 10.3934/era.2020051 [8] Derrick Jones, Xu Zhang. A conforming-nonconforming mixed immersed finite element method for unsteady Stokes equations with moving interfaces. Electronic Research Archive, , () : -. doi: 10.3934/era.2021032 [9] Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095 [10] Xiaomeng Li, Qiang Xu, Ailing Zhu. Weak Galerkin mixed finite element methods for parabolic equations with memory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 513-531. doi: 10.3934/dcdss.2019034 [11] Alexander Zlotnik. The Numerov-Crank-Nicolson scheme on a non-uniform mesh for the time-dependent Schrödinger equation on the half-axis. Kinetic & Related Models, 2015, 8 (3) : 587-613. doi: 10.3934/krm.2015.8.587 [12] Javier A. Almonacid, Gabriel N. Gatica, Ricardo Oyarzúa, Ricardo Ruiz-Baier. A new mixed finite element method for the n-dimensional Boussinesq problem with temperature-dependent viscosity. Networks & Heterogeneous Media, 2020, 15 (2) : 215-245. doi: 10.3934/nhm.2020010 [13] Jiaping Yu, Haibiao Zheng, Feng Shi, Ren Zhao. Two-grid finite element method for the stabilization of mixed Stokes-Darcy model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 387-402. doi: 10.3934/dcdsb.2018109 [14] Kun Wang, Yinnian He, Yueqiang Shang. Fully discrete finite element method for the viscoelastic fluid motion equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 665-684. doi: 10.3934/dcdsb.2010.13.665 [15] Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021, 11 (3) : 601-624. doi: 10.3934/mcrf.2021014 [16] Runchang Lin, Huiqing Zhu. A discontinuous Galerkin least-squares finite element method for solving Fisher's equation. Conference Publications, 2013, 2013 (special) : 489-497. doi: 10.3934/proc.2013.2013.489 [17] Xiaoxiao He, Fei Song, Weibing Deng. A stabilized nonconforming Nitsche's extended finite element method for Stokes interface problems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021163 [18] Kai Qu, Qi Dong, Chanjie Li, Feiyu Zhang. Finite element method for two-dimensional linear advection equations based on spline method. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2471-2485. doi: 10.3934/dcdss.2021056 [19] Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic & Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639 [20] Cornel M. Murea, H. G. E. Hentschel. A finite element method for growth in biological development. Mathematical Biosciences & Engineering, 2007, 4 (2) : 339-353. doi: 10.3934/mbe.2007.4.339

2020 Impact Factor: 1.833

## Tools

Article outline

Figures and Tables