doi: 10.3934/era.2020127

A four-field mixed finite element method for Biot's consolidation problems

1. 

School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China

2. 

Department of Mathematical Sciences, George Mason University, Fairfax, VA 22030, USA

3. 

Division of Mathematical Sciences, National Science Foundation, Alexandria, VA 22314, USA

* Corresponding author: Junping Wang

Received  August 2020 Published  December 2020

This article presents a four-field mixed finite element method for Biot's consolidation problems, where the four fields include the displacement, total stress, flux and pressure for the porous medium component of the modeling system. The mixed finite element method involving Raviart-Thomas element is used for the fluid flow equation, while the Crank-Nicolson scheme is employed for the time discretization. The main contribution of this work is the derivation of the optimal order error estimates for semi-discrete and fully-discrete schemes for the unknowns in energy norm or $ L^2 $ norm. Numerical experiments are presented to validate the theoretical results.

Citation: Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, doi: 10.3934/era.2020127
References:
[1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2 Edition, Academic Press, New York, 2003.   Google Scholar
[2]

I. Babuška, The finite element method with penalty, Math. Comp., 27 (1973), 221-228.  doi: 10.1090/S0025-5718-1973-0351118-5.  Google Scholar

[3]

L. Berger, R. Bordas, D. Kay and S. Tavener, Stabilized lowest-order finite element approximation for linear three-field poroelasticity, SIAM J. Sci. Comput., 37 (2015), A2222–A2245. doi: 10.1137/15M1009822.  Google Scholar

[4]

M. A. Biot, General theory of three-dimensional consolidation, J. Appl. Phys., 12 (1941), 155-164.  doi: 10.1063/1.1712886.  Google Scholar

[5]

M. A. Biot, Theory of elasticity and consolidation for a porous anisotropic solid, J. Appl. Phys., 26 (1955), 182-185.  doi: 10.1063/1.1721956.  Google Scholar

[6]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Third edition. Texts in Applied Mathematics, 15. Springer, New York, 2008. doi: 10.1007/978-0-387-75934-0.  Google Scholar

[7]

F. Brezzi, On the existence, uniqueness, and approximation of saddle point problems arising from Lagrange multipliers, RAIRO, 8 (1974), 129-151.   Google Scholar

[8]

F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, 15. Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-3172-1.  Google Scholar

[9]

X. HuC. RodrigoF. J. Gaspar and L. T. Zikatanov, A nonconforming finite element method for the Biot's consolidation model in poroelasticity, J. Comput. Appl. Math., 310 (2017), 143-154.  doi: 10.1016/j.cam.2016.06.003.  Google Scholar

[10]

J. Korsawe and G. Starke, A least-squares mixed finite element method for Biot's consolidation problem in porous media, SIAM J. Numer. Anal., 43 (2005), 318-339.  doi: 10.1137/S0036142903432929.  Google Scholar

[11]

S. KumarR. Oyarz$\acute{u}$aR. Ruiz-Baier and R. Sandilya, Conservative discontinuous finite volume and mixed schemes for a new four-field formulation in poroelasticity, ESAIM Math. Model. Numer. Anal., 54 (2020), 273-299.  doi: 10.1051/m2an/2019063.  Google Scholar

[12]

J. J. Lee, Robust error analysis of coupled mixed methods for Biot's consolidation model, J. Sci. Comput., 69 (2016), 610-632.  doi: 10.1007/s10915-016-0210-0.  Google Scholar

[13]

J. J. Lee, K.-A. Mardal and R. Winther, Parameter-robust discretization and preconditioning of Biot's consolidation model, SIAM J. Sci. Comput., 39 (2017), A1–A24. doi: 10.1137/15M1029473.  Google Scholar

[14]

J. J. Lee, E. Piersanti, K.-A. Mardal and M. E. Rognes, A mixed finite element method for nearly incompressible multiple-network poroelasticity, SIAM J. Sci. Comput., 41 (2019), A722–A747. doi: 10.1137/18M1182395.  Google Scholar

[15]

R. LeidermanP. BarboneA. Oberai and J. Bamber, Coupling between elastic strain and interstitial fluid flow: ramifications for poroelastic imaging, Phys. Med. Biol., 51 (2006), 6291-6313.   Google Scholar

[16]

M. A. Murad and A. F. D. Loula, Improved accuracy in finite element analysis of Biot's consolidation problem, Comput. Methods Appl. Mech. Engrg., 95 (1992), 359-382.  doi: 10.1016/0045-7825(92)90193-N.  Google Scholar

[17]

M. A. Murad and A. F. D. Loula, On stability and convergence of finite element approximations of Biot's consolidation problem, Internat. J. Numer. Methods Engrg., 37 (1994), 645-667.  doi: 10.1002/nme.1620370407.  Google Scholar

[18]

M. A. MuradV. Thom$\acute{e}$e and A. F. D. Loula, Asymptotic behavior of semidiscrete finite-element approximations of Biot's consolidation problem, SIAM J. Numer. Anal., 33 (1996), 1065-1083.  doi: 10.1137/0733052.  Google Scholar

[19]

J.-C. Nédélec, Mixed finite elements in ${\bf R}^{3}$, Numer. Math., 35 (1980), 315-341.  doi: 10.1007/BF01396415.  Google Scholar

[20]

P. A. NettiL. T. BaxterY. BoucherR. Skalak and R. K. Jain, Macro-and microscopic fluid transport in living tissues: Application to solid tumors, AIChE Journal of Bioengineering Food, and Natural Products, 43 (1997), 818-834.  doi: 10.1002/aic.690430327.  Google Scholar

[21]

J. A. Nitsche, On Korn's second inequality, RAIRO Anal. Numér., 15 (1981), 237-248.  doi: 10.1051/m2an/1981150302371.  Google Scholar

[22]

R. Oyarz$\acute{u}$a and R. Ruiz-Baier, Locking-free finite element methods for poroelasticity, SIAM J. Numer. Anal., 54 (2016), 2951-2973.  doi: 10.1137/15M1050082.  Google Scholar

[23]

P. J. Phillips and M. F. Wheeler, A coupling of mixed and continuous Galerkin finite element methods for poroelasticity Ⅰ: The continuous in time case, Comput. Geosci., 11 (2007), 131-144.  doi: 10.1007/s10596-007-9045-y.  Google Scholar

[24]

P. J. Phillips and M. F. Wheeler, A coupling of mixed and continuous Galerkin finite element methods for poroelasticity Ⅱ: The discrete-in-time case, Comput. Geosci., 11 (2007), 145-158.  doi: 10.1007/s10596-007-9044-z.  Google Scholar

[25]

W. Qi, P. Seshaiyer and J. Wang, Finite element method with the total stress variable for Biot's consolidation model, 2020, https://arXiv.org/abs/2008.01278. Google Scholar

[26]

A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer Series in Computational Mathematics, 23. Springer-Verlag, Berlin, 1994.  Google Scholar

[27]

P.-A. Raviart and J. M. Thomas, A mixed finite element method for second order elliptic problems, Mathematical Aspects of the Finite Element Method (1. Galligani, E. Magenes, eds.), Lectures Notes in Math., Springer-Verlag, New York, 606 (1977), 292–315.  Google Scholar

[28]

S.-Y. Yi, Convergence analysis of a new mixed finite element method for Biot's consolidation model, Numer. Methods Partial Differential Equations, 30 (2014), 1189-1210.  doi: 10.1002/num.21865.  Google Scholar

show all references

References:
[1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2 Edition, Academic Press, New York, 2003.   Google Scholar
[2]

I. Babuška, The finite element method with penalty, Math. Comp., 27 (1973), 221-228.  doi: 10.1090/S0025-5718-1973-0351118-5.  Google Scholar

[3]

L. Berger, R. Bordas, D. Kay and S. Tavener, Stabilized lowest-order finite element approximation for linear three-field poroelasticity, SIAM J. Sci. Comput., 37 (2015), A2222–A2245. doi: 10.1137/15M1009822.  Google Scholar

[4]

M. A. Biot, General theory of three-dimensional consolidation, J. Appl. Phys., 12 (1941), 155-164.  doi: 10.1063/1.1712886.  Google Scholar

[5]

M. A. Biot, Theory of elasticity and consolidation for a porous anisotropic solid, J. Appl. Phys., 26 (1955), 182-185.  doi: 10.1063/1.1721956.  Google Scholar

[6]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Third edition. Texts in Applied Mathematics, 15. Springer, New York, 2008. doi: 10.1007/978-0-387-75934-0.  Google Scholar

[7]

F. Brezzi, On the existence, uniqueness, and approximation of saddle point problems arising from Lagrange multipliers, RAIRO, 8 (1974), 129-151.   Google Scholar

[8]

F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, 15. Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-3172-1.  Google Scholar

[9]

X. HuC. RodrigoF. J. Gaspar and L. T. Zikatanov, A nonconforming finite element method for the Biot's consolidation model in poroelasticity, J. Comput. Appl. Math., 310 (2017), 143-154.  doi: 10.1016/j.cam.2016.06.003.  Google Scholar

[10]

J. Korsawe and G. Starke, A least-squares mixed finite element method for Biot's consolidation problem in porous media, SIAM J. Numer. Anal., 43 (2005), 318-339.  doi: 10.1137/S0036142903432929.  Google Scholar

[11]

S. KumarR. Oyarz$\acute{u}$aR. Ruiz-Baier and R. Sandilya, Conservative discontinuous finite volume and mixed schemes for a new four-field formulation in poroelasticity, ESAIM Math. Model. Numer. Anal., 54 (2020), 273-299.  doi: 10.1051/m2an/2019063.  Google Scholar

[12]

J. J. Lee, Robust error analysis of coupled mixed methods for Biot's consolidation model, J. Sci. Comput., 69 (2016), 610-632.  doi: 10.1007/s10915-016-0210-0.  Google Scholar

[13]

J. J. Lee, K.-A. Mardal and R. Winther, Parameter-robust discretization and preconditioning of Biot's consolidation model, SIAM J. Sci. Comput., 39 (2017), A1–A24. doi: 10.1137/15M1029473.  Google Scholar

[14]

J. J. Lee, E. Piersanti, K.-A. Mardal and M. E. Rognes, A mixed finite element method for nearly incompressible multiple-network poroelasticity, SIAM J. Sci. Comput., 41 (2019), A722–A747. doi: 10.1137/18M1182395.  Google Scholar

[15]

R. LeidermanP. BarboneA. Oberai and J. Bamber, Coupling between elastic strain and interstitial fluid flow: ramifications for poroelastic imaging, Phys. Med. Biol., 51 (2006), 6291-6313.   Google Scholar

[16]

M. A. Murad and A. F. D. Loula, Improved accuracy in finite element analysis of Biot's consolidation problem, Comput. Methods Appl. Mech. Engrg., 95 (1992), 359-382.  doi: 10.1016/0045-7825(92)90193-N.  Google Scholar

[17]

M. A. Murad and A. F. D. Loula, On stability and convergence of finite element approximations of Biot's consolidation problem, Internat. J. Numer. Methods Engrg., 37 (1994), 645-667.  doi: 10.1002/nme.1620370407.  Google Scholar

[18]

M. A. MuradV. Thom$\acute{e}$e and A. F. D. Loula, Asymptotic behavior of semidiscrete finite-element approximations of Biot's consolidation problem, SIAM J. Numer. Anal., 33 (1996), 1065-1083.  doi: 10.1137/0733052.  Google Scholar

[19]

J.-C. Nédélec, Mixed finite elements in ${\bf R}^{3}$, Numer. Math., 35 (1980), 315-341.  doi: 10.1007/BF01396415.  Google Scholar

[20]

P. A. NettiL. T. BaxterY. BoucherR. Skalak and R. K. Jain, Macro-and microscopic fluid transport in living tissues: Application to solid tumors, AIChE Journal of Bioengineering Food, and Natural Products, 43 (1997), 818-834.  doi: 10.1002/aic.690430327.  Google Scholar

[21]

J. A. Nitsche, On Korn's second inequality, RAIRO Anal. Numér., 15 (1981), 237-248.  doi: 10.1051/m2an/1981150302371.  Google Scholar

[22]

R. Oyarz$\acute{u}$a and R. Ruiz-Baier, Locking-free finite element methods for poroelasticity, SIAM J. Numer. Anal., 54 (2016), 2951-2973.  doi: 10.1137/15M1050082.  Google Scholar

[23]

P. J. Phillips and M. F. Wheeler, A coupling of mixed and continuous Galerkin finite element methods for poroelasticity Ⅰ: The continuous in time case, Comput. Geosci., 11 (2007), 131-144.  doi: 10.1007/s10596-007-9045-y.  Google Scholar

[24]

P. J. Phillips and M. F. Wheeler, A coupling of mixed and continuous Galerkin finite element methods for poroelasticity Ⅱ: The discrete-in-time case, Comput. Geosci., 11 (2007), 145-158.  doi: 10.1007/s10596-007-9044-z.  Google Scholar

[25]

W. Qi, P. Seshaiyer and J. Wang, Finite element method with the total stress variable for Biot's consolidation model, 2020, https://arXiv.org/abs/2008.01278. Google Scholar

[26]

A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer Series in Computational Mathematics, 23. Springer-Verlag, Berlin, 1994.  Google Scholar

[27]

P.-A. Raviart and J. M. Thomas, A mixed finite element method for second order elliptic problems, Mathematical Aspects of the Finite Element Method (1. Galligani, E. Magenes, eds.), Lectures Notes in Math., Springer-Verlag, New York, 606 (1977), 292–315.  Google Scholar

[28]

S.-Y. Yi, Convergence analysis of a new mixed finite element method for Biot's consolidation model, Numer. Methods Partial Differential Equations, 30 (2014), 1189-1210.  doi: 10.1002/num.21865.  Google Scholar

Table 1.  Convergence at $ t^n = 1 $ when $ \tau = h $ for $ ([P_2]^2,P_0,P_0, RT_0) $: Example 1 with homogeneous Dirichlet boundary condition
h $ |||e_{\bf{u}}^n||| $ $ ||e_{\bf{u}}^n|| $ $ ||e_z^n|| $ $ ||e_p^n|| $ $ ||e_{{\bf{q}}}^n|| $
error order error order error order error order error order
1/8 1.0970e+00 3.6212e-02 9.8472e-04 1.0326e-03 2.6009e-04
1/16 5.5495e-01 0.98 9.1920e-03 1.98 2.9921e-04 1.72 3.4406e-04 1.59 1.1141e-04 1.22
1/32 2.7839e-01 1.00 2.3020e-03 2.00 1.0632e-04 1.49 1.1722e-04 1.55 3.6399e-05 1.61
1/64 1.3934e-01 1.00 5.7569e-04 2.00 2.8200e-05 1.92 3.0540e-05 1.94 8.6783e-06 2.02
h $ |||e_{\bf{u}}^n||| $ $ ||e_{\bf{u}}^n|| $ $ ||e_z^n|| $ $ ||e_p^n|| $ $ ||e_{{\bf{q}}}^n|| $
error order error order error order error order error order
1/8 1.0970e+00 3.6212e-02 9.8472e-04 1.0326e-03 2.6009e-04
1/16 5.5495e-01 0.98 9.1920e-03 1.98 2.9921e-04 1.72 3.4406e-04 1.59 1.1141e-04 1.22
1/32 2.7839e-01 1.00 2.3020e-03 2.00 1.0632e-04 1.49 1.1722e-04 1.55 3.6399e-05 1.61
1/64 1.3934e-01 1.00 5.7569e-04 2.00 2.8200e-05 1.92 3.0540e-05 1.94 8.6783e-06 2.02
Table 2.  Convergence at $ t^n = 1 $ when $ h = 1/512 $ for $ ([P_2]^2,P_0,P_0, RT_0) $: Example 1 with homogeneous Dirichlet boundary condition
$ \tau $ $ |||e_{\bf{u}}^n||| $ $ ||e_{\bf{u}}^n|| $ $ ||e_z^n|| $ $ || e_p^n|| $ $ ||e_{{\bf{q}}}^n|| $
error order error order error order error order
1 1.9294e+00 3.1761e-01 5.6108e-02 6.9489e-02 1.4643e-02
1/2 4.7787e-01 2.01 7.8199e-02 2.02 1.3792e-02 2.02 1.7129e-02 2.02 3.3258e-03 2.14
1/4 1.2053e-01 1.99 1.9539e-02 2.00 3.4454e-03 2.00 4.2784e-03 2.00 8.3143e-04 2.00
1/8 3.4530e-02 1.80 4.8821e-03 2.00 8.6090e-04 2.00 1.0691e-03 2.00 2.0775e-04 2.00
$ \tau $ $ |||e_{\bf{u}}^n||| $ $ ||e_{\bf{u}}^n|| $ $ ||e_z^n|| $ $ || e_p^n|| $ $ ||e_{{\bf{q}}}^n|| $
error order error order error order error order
1 1.9294e+00 3.1761e-01 5.6108e-02 6.9489e-02 1.4643e-02
1/2 4.7787e-01 2.01 7.8199e-02 2.02 1.3792e-02 2.02 1.7129e-02 2.02 3.3258e-03 2.14
1/4 1.2053e-01 1.99 1.9539e-02 2.00 3.4454e-03 2.00 4.2784e-03 2.00 8.3143e-04 2.00
1/8 3.4530e-02 1.80 4.8821e-03 2.00 8.6090e-04 2.00 1.0691e-03 2.00 2.0775e-04 2.00
Table 3.  Convergence at $ t^n = 1 $ when $ \tau = h $ for $ ([P_2]^2,P_0,P_0, RT_0) $: Example 2 with non-homogeneous Dirichlet boundary data
h $ |||e_{\bf{u}}^n||| $ $ ||e_{\bf{u}}^n|| $ $ ||e_z^n|| $ $ ||e_p^n|| $ $ ||e_{{\bf{q}}}^n|| $
error order error order error order error order error order
1/8 1.6784e-02 5.6421e-04 1.9561e-02 1.2901e-03 6.7991e-03
1/16 8.6688e-03 0.95 1.4538e-04 1.96 5.3817e-03 1.86 4.4940e-04 1.52 2.3988e-03 1.50
1/32 4.3990e-03 0.98 3.6669e-05 1.99 1.4495e-03 1.89 9.9263e-05 2.18 7.0921e-04 1.76
1/64 2.2148e-03 0.99 9.1937e-06 2.00 3.9949e-04 1.86 2.2901e-05 2.12 2.2685e-04 1.64
h $ |||e_{\bf{u}}^n||| $ $ ||e_{\bf{u}}^n|| $ $ ||e_z^n|| $ $ ||e_p^n|| $ $ ||e_{{\bf{q}}}^n|| $
error order error order error order error order error order
1/8 1.6784e-02 5.6421e-04 1.9561e-02 1.2901e-03 6.7991e-03
1/16 8.6688e-03 0.95 1.4538e-04 1.96 5.3817e-03 1.86 4.4940e-04 1.52 2.3988e-03 1.50
1/32 4.3990e-03 0.98 3.6669e-05 1.99 1.4495e-03 1.89 9.9263e-05 2.18 7.0921e-04 1.76
1/64 2.2148e-03 0.99 9.1937e-06 2.00 3.9949e-04 1.86 2.2901e-05 2.12 2.2685e-04 1.64
Table 4.  Convergence at $ t^n = 1 $ when $ \tau = h $ for $ ([P_2]^2,P_0,P_0, RT_0) $: Example 2 with mixed Dirichlet and Neumann boundary conditions
h $ |||e_{\bf{u}}^n||| $ $ ||e_{\bf{u}}^n|| $ $ ||e_z^n|| $ $ ||e_p^n|| $ $ ||e_{{\bf{q}}}^n|| $
error order error order error order error order error order
1/8 1.6863e-02 5.3041e-04 2.0902e-02 1.1893e-03 6.4497e-03
1/16 8.6834e-03 0.96 1.3557e-04 1.97 5.5918e-03 1.90 2.8353e-04 2.07 1.9159e-03 1.75
1/32 4.4019e-03 0.98 3.4070e-05 1.99 1.4745e-03 1.92 3.4283e-05 3.05 4.1519e-04 2.21
1/64 2.2155e-03 0.99 8.5408e-06 2.00 4.0097e-04 1.88 5.5825e-06 2.62 9.2273e-05 2.17
h $ |||e_{\bf{u}}^n||| $ $ ||e_{\bf{u}}^n|| $ $ ||e_z^n|| $ $ ||e_p^n|| $ $ ||e_{{\bf{q}}}^n|| $
error order error order error order error order error order
1/8 1.6863e-02 5.3041e-04 2.0902e-02 1.1893e-03 6.4497e-03
1/16 8.6834e-03 0.96 1.3557e-04 1.97 5.5918e-03 1.90 2.8353e-04 2.07 1.9159e-03 1.75
1/32 4.4019e-03 0.98 3.4070e-05 1.99 1.4745e-03 1.92 3.4283e-05 3.05 4.1519e-04 2.21
1/64 2.2155e-03 0.99 8.5408e-06 2.00 4.0097e-04 1.88 5.5825e-06 2.62 9.2273e-05 2.17
Table 5.  Convergence at $ t^n = 1 $ when $ \tau = h $ for $ ([P_2]^2,P_1,P_0, RT_0) $: Example 2 with non-homogeneous Dirichlet boundary data
h $ |||e_{\bf{u}}^n||| $ $ ||e_{\bf{u}}^n|| $ $ ||e_z^n|| $ $ ||e_p^n|| $ $ ||e_{{\bf{q}}}^n|| $
error order error order error order error order error order
1/8 3.1646e-04 1.3523e-05 5.1888e-02 3.2782e-03 1.6614e-02
1/16 5.1165e-05 2.63 4.1755e-06 1.70 1.3362e-02 1.96 1.1749e-03 1.48 6.1427e-03 1.44
1/32 1.0911e-05 2.23 7.0520e-07 2.57 3.3167e-03 2.01 2.5536e-04 2.20 1.8480e-03 1.73
1/64 3.3563e-06 1.70 1.2494e-07 2.50 8.2329e-04 2.01 5.7363e-05 2.15 6.1243e-04 1.59
h $ |||e_{\bf{u}}^n||| $ $ ||e_{\bf{u}}^n|| $ $ ||e_z^n|| $ $ ||e_p^n|| $ $ ||e_{{\bf{q}}}^n|| $
error order error order error order error order error order
1/8 3.1646e-04 1.3523e-05 5.1888e-02 3.2782e-03 1.6614e-02
1/16 5.1165e-05 2.63 4.1755e-06 1.70 1.3362e-02 1.96 1.1749e-03 1.48 6.1427e-03 1.44
1/32 1.0911e-05 2.23 7.0520e-07 2.57 3.3167e-03 2.01 2.5536e-04 2.20 1.8480e-03 1.73
1/64 3.3563e-06 1.70 1.2494e-07 2.50 8.2329e-04 2.01 5.7363e-05 2.15 6.1243e-04 1.59
Table 6.  Convergence at $ t^n = 1 $ when $ \tau = h $ for $ ([P_2]^2,P_1,P_0, RT_0) $: Example 2 with mixed Dirichlet and Neumann boundary data
h $ |||e_{\bf{u}}^n||| $ $ ||e_{\bf{u}}^n|| $ $ ||e_z^n|| $ $ ||e_p^n|| $ $ ||e_{{\bf{q}}}^n|| $
error order error order error order error order error order
1/8 5.4994e-04 2.8159e-05 5.1568e-02 3.1130e-03 1.4807e-02
1/16 9.7846e-05 2.49 6.4894e-06 2.12 1.3027e-02 1.98 7.7273e-04 2.01 4.4788e-03 1.73
1/32 1.8542e-05 2.40 8.1614e-07 2.99 3.1901e-03. 2.03 9.6270e-05 3.00 8.9236e-04 2.33
1/64 4.2955e-06 2.11 1.0693e-07 2.93 7.8825e-04. 2.02 1.1182e-05 3.11 1.7505e-04 2.35
h $ |||e_{\bf{u}}^n||| $ $ ||e_{\bf{u}}^n|| $ $ ||e_z^n|| $ $ ||e_p^n|| $ $ ||e_{{\bf{q}}}^n|| $
error order error order error order error order error order
1/8 5.4994e-04 2.8159e-05 5.1568e-02 3.1130e-03 1.4807e-02
1/16 9.7846e-05 2.49 6.4894e-06 2.12 1.3027e-02 1.98 7.7273e-04 2.01 4.4788e-03 1.73
1/32 1.8542e-05 2.40 8.1614e-07 2.99 3.1901e-03. 2.03 9.6270e-05 3.00 8.9236e-04 2.33
1/64 4.2955e-06 2.11 1.0693e-07 2.93 7.8825e-04. 2.02 1.1182e-05 3.11 1.7505e-04 2.35
[1]

Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222

[2]

Derrick Jones, Xu Zhang. A conforming-nonconforming mixed immersed finite element method for unsteady Stokes equations with moving interfaces. Electronic Research Archive, , () : -. doi: 10.3934/era.2021032

[3]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[4]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[5]

Jinye Shen, Xian-Ming Gu. Two finite difference methods based on an H2N2 interpolation for two-dimensional time fractional mixed diffusion and diffusion-wave equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021086

[6]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[7]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[8]

Tobias Breiten, Sergey Dolgov, Martin Stoll. Solving differential Riccati equations: A nonlinear space-time method using tensor trains. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 407-429. doi: 10.3934/naco.2020034

[9]

Mikhail Dokuchaev, Guanglu Zhou, Song Wang. A modification of Galerkin's method for option pricing. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021077

[10]

Hongsong Feng, Shan Zhao. A multigrid based finite difference method for solving parabolic interface problem. Electronic Research Archive, , () : -. doi: 10.3934/era.2021031

[11]

Tianhu Yu, Jinde Cao, Chuangxia Huang. Finite-time cluster synchronization of coupled dynamical systems with impulsive effects. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3595-3620. doi: 10.3934/dcdsb.2020248

[12]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[13]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[14]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[15]

Maolin Cheng, Yun Liu, Jianuo Li, Bin Liu. Nonlinear Grey Bernoulli model NGBM (1, 1)'s parameter optimisation method and model application. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021054

[16]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[17]

Sergey E. Mikhailov, Carlos F. Portillo. Boundary-Domain Integral Equations equivalent to an exterior mixed BVP for the variable-viscosity compressible Stokes PDEs. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1103-1133. doi: 10.3934/cpaa.2021009

[18]

Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221

[19]

Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200

[20]

Xiaozhong Yang, Xinlong Liu. Numerical analysis of two new finite difference methods for time-fractional telegraph equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3921-3942. doi: 10.3934/dcdsb.2020269

 Impact Factor: 0.263

Article outline

Figures and Tables

[Back to Top]