
-
Previous Article
A conforming discontinuous Galerkin finite element method on rectangular partitions
- ERA Home
- This Issue
-
Next Article
Complexity in time-delay networks of multiple interacting neural groups
Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM
Department of Mathematics, Ajou University, Suwon, 16499, Republic of Korea |
An efficient computing method for a target velocity tracking problem of fluid flows is considered. We first adopts the Lagrange multipliers method to obtain the optimality system, and then designs a simple and effective feedback control law based on the relationship between the control $ {{\boldsymbol f}} $ and the adjoint variable $ {{\boldsymbol w}} $ in the optimality system. We consider a reduced order modeling (ROM) of this problem for real-time computing. In order to improve the existing ROM method, the deep learning technique, which is currently being actively researched, is applied. We review previous research results and some computational results are presented.
References:
[1] |
F. Abergal and R. Temam,
On some control problems in fluid mechanics, Theoret. Comput. Fluid Dynamics, 1 (1990), 303-325.
doi: 10.1007/BF00271794. |
[2] |
R. A. Adams, Sobolev Spaces, Academic Press, 1975.
![]() |
[3] |
S. E. Ahmed, O. San, A. Rasheed and T. Iliescu, A long short-term memory embedding for hybrid uplifted reduced order models, Phys. D, 409 (2020), 132471, 16 pp.
doi: 10.1016/j.physd.2020.132471. |
[4] |
D. Amsallem, Interpolation on Manifolds of CFD-Based Fluid and Finite Element-Based Structural Reduced-Order Models for On-Line Aeroelastic Predictions, Ph. D. Thesis, Stanford University, 2010. |
[5] |
P. Benner, S. Gugercin and K. Willcox,
A survey of projection-based model reduction methods for parametric dynamical systems, SIAM Rev., 57 (2015), 483-531.
doi: 10.1137/130932715. |
[6] |
G. Berkooz, P. Holmes and J. L. Lumley,
The proper orthogonal decomposition in the analysis of turbulent flows, Annual review of fluid mechanics, 25 (1993), 539-575.
|
[7] |
S. Brunton, B. Noack and P. Koumoutsakos,
Machine Learning for Fluid Mechanics, Annu. Rev. Fluid Mech., 52 (2020), 477-508.
doi: 10.1146/annurev-fluid-010719-060214. |
[8] |
J. Burkardt, M. Gunzburger and H.-C. Lee,
Centroidal voronoi tessellation-based reduced-order modeling of complex systems, SIAM J. Sci. Comput., 28 (2006), 459-484.
doi: 10.1137/5106482750342221x. |
[9] |
J. Burkardt, M. Gunzburger and H.-C. Lee,
POD and CVT-based reduced-order modeling of Navier-Stokes flows, Comput. Methods Appl. Mech. Engrg., 196 (2006), 337-355.
doi: 10.1016/j.cma.2006.04.004. |
[10] |
J. H. Faghmous, A. Banerjeeand, S. Shekharand, M. Steinbach, V. Kumar, A. R. Ganguly and N. Samatova,
Theory-guided data science for climate change, Computer, 47 (2014), 74-78.
doi: 10.1109/MC.2014.335. |
[11] |
J. Ffowcs-Williams and B. Zhao,
Active control of vortex shedding, J. Fluids Struct., S3 (1989), 115-122.
doi: 10.1016/S0889-9746(89)90026-1. |
[12] |
V. Girault and P. Raviart, Navier-Stokes Equations, North-Hollan, Amsterdam, 1979. Google Scholar |
[13] |
V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, Berlin, 1986.
doi: 10.1007/978-3-642-61623-5. |
[14] |
G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University, Baltimore, 1996. |
[15] |
M. D. Gunzburger and L. S. Hou,
Finite-dimensional approximation of a class of constrained nonlinear optimal control problems, SIAM J. Control Optim., 34 (1996), 1001-1043.
doi: 10.1137/S0363012994262361. |
[16] |
M. Gunzburger and H.-C. Lee, Active control of vortex shedding, J. Appl. Mech., 63 (1996), 828-835. Google Scholar |
[17] |
M. D. Gunzburger and S. Manservisi,
Analysis and approximation of the velocity tracking problem for Navier-Stokes flows with distributed control, SIAM J. Numer. Anal., 37 (2000), 1481-1512.
doi: 10.1137/S0036142997329414. |
[18] |
M. D. Gunzburger and S. Manservisi,
The velocity tracking problem for Navier-Stokes flows with boundary control, SIAM J. Control Optim., 39 (2000), 594-634.
doi: 10.1137/S0363012999353771. |
[19] |
M. D. Gunzburger and S. Manservisi,
Analysis and approximation for linear feedback control for tracking the velocity in Navier-Stokes flows, Comput. Methods Appl. Mech. Engrg., 189 (2000), 803-823.
doi: 10.1016/S0045-7825(99)00344-8. |
[20] |
F. Hecht,
New development in FreeFem++, J. Numer. Math., 20 (2012), 251-265.
doi: 10.1515/jnum-2012-0013. |
[21] |
L. S. Hou and Y. Yan,
Dynamics for controlled Navier-Stokes systems with distributed controls, SIAM J. Control Optim., 35 (1997), 654-677.
doi: 10.1137/S0363012994274926. |
[22] |
L. S. Hou and Y. Yan,
Dynamics and approximations of a velocity tracking problem for the Navier-Stokes flows with piecewise distributed controls, SIAM J. Control Optim., 35 (1997), 1847-1885.
doi: 10.1137/S036301299529286X. |
[23] |
A. Karpatne, G. Atluri, J. H. Faghmous, M. Steinbach, A. Banerjee, A. Ganguly, S. Shekhar, N. Samatova and V. Kumar,
Theory-guided data science: A new paradigm for scientific discovery from data, IEEE Trans. Knowl. Data Eng., 29 (2017), 2318-2331.
doi: 10.1109/TKDE.2017.2720168. |
[24] |
A. J. Majda and D. Qi,
Strategies for reduced-order models for predicting the statistical responses and uncertainty quantification in complex turbulent dynamical systems, SIAM Rev., 60 (2018), 491-549.
doi: 10.1137/16M1104664. |
[25] |
S. Pawar, S. Ahmed, O. San and A. Rasheed, An evolve-then-correct reduced order model for hidden fluid dynamics. Mathematics, Mathematics, 8 (2020), 570. Google Scholar |
[26] |
S. Pawar, S. E. Ahmed, O. San and A. Rasheed, Data-driven recovery of hidden physics in reduced order modeling of fluid flows, preprint, arXiv: 1910.13909
doi: 10.1063/5.0002051. |
[27] |
M. Rahman, S. Pawar, O. San, A. Rasheed and T. Iliescu, A non-intrusive reduced order modeling framework for quasi-geostrophic turbulence, preprint, arXiv: 1906.11617 Google Scholar |
[28] |
M. Rathinam and L. R. Petzold,
A new look at proper orthogonal decomposition, SIAM J. Numer. Anal., 41 (2003), 1893-1925.
doi: 10.1137/S0036142901389049. |
[29] |
L. Scarpa, Analysis and optimal velocity control of a stochastic convective Cahn-Hilliard equation, preprint, arXiv: 2007.14735 Google Scholar |
[30] |
L. Sirovich,
Turbulence and the dynamics of coherent structures, part ⅰ: Coherent structures; part ⅱ: symmetries and transformations; part ⅲ: Dynamics and scaling, Quart. Appl. Math., 45 (1987), 561-590.
doi: 10.1090/qam/910464. |
[31] |
M. Strazzullo, Z. Zainib, F. Ballarin and G. Rozza, Reduced order methods for parametrized non-linear and time dependent optimal flow control problems, towards applications in biomedical and environmental sciences, preprint, arXiv: 1912.07886 Google Scholar |
[32] |
Kailai Xu, Bella Shi and Shuyi Yin, Deep Learning for Partial Differential Equations, Stanford University, 2018. Google Scholar |
show all references
References:
[1] |
F. Abergal and R. Temam,
On some control problems in fluid mechanics, Theoret. Comput. Fluid Dynamics, 1 (1990), 303-325.
doi: 10.1007/BF00271794. |
[2] |
R. A. Adams, Sobolev Spaces, Academic Press, 1975.
![]() |
[3] |
S. E. Ahmed, O. San, A. Rasheed and T. Iliescu, A long short-term memory embedding for hybrid uplifted reduced order models, Phys. D, 409 (2020), 132471, 16 pp.
doi: 10.1016/j.physd.2020.132471. |
[4] |
D. Amsallem, Interpolation on Manifolds of CFD-Based Fluid and Finite Element-Based Structural Reduced-Order Models for On-Line Aeroelastic Predictions, Ph. D. Thesis, Stanford University, 2010. |
[5] |
P. Benner, S. Gugercin and K. Willcox,
A survey of projection-based model reduction methods for parametric dynamical systems, SIAM Rev., 57 (2015), 483-531.
doi: 10.1137/130932715. |
[6] |
G. Berkooz, P. Holmes and J. L. Lumley,
The proper orthogonal decomposition in the analysis of turbulent flows, Annual review of fluid mechanics, 25 (1993), 539-575.
|
[7] |
S. Brunton, B. Noack and P. Koumoutsakos,
Machine Learning for Fluid Mechanics, Annu. Rev. Fluid Mech., 52 (2020), 477-508.
doi: 10.1146/annurev-fluid-010719-060214. |
[8] |
J. Burkardt, M. Gunzburger and H.-C. Lee,
Centroidal voronoi tessellation-based reduced-order modeling of complex systems, SIAM J. Sci. Comput., 28 (2006), 459-484.
doi: 10.1137/5106482750342221x. |
[9] |
J. Burkardt, M. Gunzburger and H.-C. Lee,
POD and CVT-based reduced-order modeling of Navier-Stokes flows, Comput. Methods Appl. Mech. Engrg., 196 (2006), 337-355.
doi: 10.1016/j.cma.2006.04.004. |
[10] |
J. H. Faghmous, A. Banerjeeand, S. Shekharand, M. Steinbach, V. Kumar, A. R. Ganguly and N. Samatova,
Theory-guided data science for climate change, Computer, 47 (2014), 74-78.
doi: 10.1109/MC.2014.335. |
[11] |
J. Ffowcs-Williams and B. Zhao,
Active control of vortex shedding, J. Fluids Struct., S3 (1989), 115-122.
doi: 10.1016/S0889-9746(89)90026-1. |
[12] |
V. Girault and P. Raviart, Navier-Stokes Equations, North-Hollan, Amsterdam, 1979. Google Scholar |
[13] |
V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, Berlin, 1986.
doi: 10.1007/978-3-642-61623-5. |
[14] |
G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University, Baltimore, 1996. |
[15] |
M. D. Gunzburger and L. S. Hou,
Finite-dimensional approximation of a class of constrained nonlinear optimal control problems, SIAM J. Control Optim., 34 (1996), 1001-1043.
doi: 10.1137/S0363012994262361. |
[16] |
M. Gunzburger and H.-C. Lee, Active control of vortex shedding, J. Appl. Mech., 63 (1996), 828-835. Google Scholar |
[17] |
M. D. Gunzburger and S. Manservisi,
Analysis and approximation of the velocity tracking problem for Navier-Stokes flows with distributed control, SIAM J. Numer. Anal., 37 (2000), 1481-1512.
doi: 10.1137/S0036142997329414. |
[18] |
M. D. Gunzburger and S. Manservisi,
The velocity tracking problem for Navier-Stokes flows with boundary control, SIAM J. Control Optim., 39 (2000), 594-634.
doi: 10.1137/S0363012999353771. |
[19] |
M. D. Gunzburger and S. Manservisi,
Analysis and approximation for linear feedback control for tracking the velocity in Navier-Stokes flows, Comput. Methods Appl. Mech. Engrg., 189 (2000), 803-823.
doi: 10.1016/S0045-7825(99)00344-8. |
[20] |
F. Hecht,
New development in FreeFem++, J. Numer. Math., 20 (2012), 251-265.
doi: 10.1515/jnum-2012-0013. |
[21] |
L. S. Hou and Y. Yan,
Dynamics for controlled Navier-Stokes systems with distributed controls, SIAM J. Control Optim., 35 (1997), 654-677.
doi: 10.1137/S0363012994274926. |
[22] |
L. S. Hou and Y. Yan,
Dynamics and approximations of a velocity tracking problem for the Navier-Stokes flows with piecewise distributed controls, SIAM J. Control Optim., 35 (1997), 1847-1885.
doi: 10.1137/S036301299529286X. |
[23] |
A. Karpatne, G. Atluri, J. H. Faghmous, M. Steinbach, A. Banerjee, A. Ganguly, S. Shekhar, N. Samatova and V. Kumar,
Theory-guided data science: A new paradigm for scientific discovery from data, IEEE Trans. Knowl. Data Eng., 29 (2017), 2318-2331.
doi: 10.1109/TKDE.2017.2720168. |
[24] |
A. J. Majda and D. Qi,
Strategies for reduced-order models for predicting the statistical responses and uncertainty quantification in complex turbulent dynamical systems, SIAM Rev., 60 (2018), 491-549.
doi: 10.1137/16M1104664. |
[25] |
S. Pawar, S. Ahmed, O. San and A. Rasheed, An evolve-then-correct reduced order model for hidden fluid dynamics. Mathematics, Mathematics, 8 (2020), 570. Google Scholar |
[26] |
S. Pawar, S. E. Ahmed, O. San and A. Rasheed, Data-driven recovery of hidden physics in reduced order modeling of fluid flows, preprint, arXiv: 1910.13909
doi: 10.1063/5.0002051. |
[27] |
M. Rahman, S. Pawar, O. San, A. Rasheed and T. Iliescu, A non-intrusive reduced order modeling framework for quasi-geostrophic turbulence, preprint, arXiv: 1906.11617 Google Scholar |
[28] |
M. Rathinam and L. R. Petzold,
A new look at proper orthogonal decomposition, SIAM J. Numer. Anal., 41 (2003), 1893-1925.
doi: 10.1137/S0036142901389049. |
[29] |
L. Scarpa, Analysis and optimal velocity control of a stochastic convective Cahn-Hilliard equation, preprint, arXiv: 2007.14735 Google Scholar |
[30] |
L. Sirovich,
Turbulence and the dynamics of coherent structures, part ⅰ: Coherent structures; part ⅱ: symmetries and transformations; part ⅲ: Dynamics and scaling, Quart. Appl. Math., 45 (1987), 561-590.
doi: 10.1090/qam/910464. |
[31] |
M. Strazzullo, Z. Zainib, F. Ballarin and G. Rozza, Reduced order methods for parametrized non-linear and time dependent optimal flow control problems, towards applications in biomedical and environmental sciences, preprint, arXiv: 1912.07886 Google Scholar |
[32] |
Kailai Xu, Bella Shi and Shuyi Yin, Deep Learning for Partial Differential Equations, Stanford University, 2018. Google Scholar |










singular vales | RIC( |
singular vales | RIC( |
||
1 | 4.83907e+02 | 99.2476% | 2 | 2.41493e+00 | 99.8174% |
3 | 3.98155e-01 | 99.9207% | 4 | 2.02669e-01 | 99.9731% |
5 | 6.01101e-02 | 99.9909% | 6 | 1.65390e-02 | 99.9964% |
7 | 6.20453e-03 | 99.9985% | 8 | 2.51213e-03 | 99.9994% |
singular vales | RIC( |
singular vales | RIC( |
||
1 | 4.83907e+02 | 99.2476% | 2 | 2.41493e+00 | 99.8174% |
3 | 3.98155e-01 | 99.9207% | 4 | 2.02669e-01 | 99.9731% |
5 | 6.01101e-02 | 99.9909% | 6 | 1.65390e-02 | 99.9964% |
7 | 6.20453e-03 | 99.9985% | 8 | 2.51213e-03 | 99.9994% |
Variables | Hyperparameters |
Number of hidden layers | 2 |
Number of neurons in each hidden layer | 120 |
Number of lookbacks | 5 |
Batch size | 32 |
Epochs | 1000 |
Activation functions in the LSTM layers | tanh |
Validation data set | 20% |
Loss function | MSE |
Optimizer | ADAM |
Variables | Hyperparameters |
Number of hidden layers | 2 |
Number of neurons in each hidden layer | 120 |
Number of lookbacks | 5 |
Batch size | 32 |
Epochs | 1000 |
Activation functions in the LSTM layers | tanh |
Validation data set | 20% |
Loss function | MSE |
Optimizer | ADAM |
Framework | Times | RMSE(0.25) |
FOM | 0 | |
LS-Proj | 1.34053e-05 | |
GP-ROM(8) | 0.3268 | 3.77711e-03 |
GP-ROM (16) | 1.7012 | 1.28362e-03 |
GP-LSTM(8) | 0.6372 | 3.20970e-04 |
Framework | Times | RMSE(0.25) |
FOM | 0 | |
LS-Proj | 1.34053e-05 | |
GP-ROM(8) | 0.3268 | 3.77711e-03 |
GP-ROM (16) | 1.7012 | 1.28362e-03 |
GP-LSTM(8) | 0.6372 | 3.20970e-04 |
[1] |
Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222 |
[2] |
Zhendong Luo. A reduced-order SMFVE extrapolation algorithm based on POD technique and CN method for the non-stationary Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1189-1212. doi: 10.3934/dcdsb.2015.20.1189 |
[3] |
Yinnian He, Yanping Lin, Weiwei Sun. Stabilized finite element method for the non-stationary Navier-Stokes problem. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 41-68. doi: 10.3934/dcdsb.2006.6.41 |
[4] |
Hantaek Bae. Solvability of the free boundary value problem of the Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2011, 29 (3) : 769-801. doi: 10.3934/dcds.2011.29.769 |
[5] |
José Luiz Boldrini, Luís H. de Miranda, Gabriela Planas. On singular Navier-Stokes equations and irreversible phase transitions. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2055-2078. doi: 10.3934/cpaa.2012.11.2055 |
[6] |
Sun-Ho Choi. Weighted energy method and long wave short wave decomposition on the linearized compressible Navier-Stokes equation. Networks & Heterogeneous Media, 2013, 8 (2) : 465-479. doi: 10.3934/nhm.2013.8.465 |
[7] |
Hi Jun Choe, Hyea Hyun Kim, Do Wan Kim, Yongsik Kim. Meshless method for the stationary incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 495-526. doi: 10.3934/dcdsb.2001.1.495 |
[8] |
Yinnian He, R. M.M. Mattheij. Reformed post-processing Galerkin method for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 369-387. doi: 10.3934/dcdsb.2007.8.369 |
[9] |
Kaitai Li, Yanren Hou. Fourier nonlinear Galerkin method for Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 1996, 2 (4) : 497-524. doi: 10.3934/dcds.1996.2.497 |
[10] |
Hi Jun Choe, Do Wan Kim, Yongsik Kim. Meshfree method for the non-stationary incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 17-39. doi: 10.3934/dcdsb.2006.6.17 |
[11] |
Takayuki Kubo, Ranmaru Matsui. On pressure stabilization method for nonstationary Navier-Stokes equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2283-2307. doi: 10.3934/cpaa.2018109 |
[12] |
Qingping Deng. A nonoverlapping domain decomposition method for nonconforming finite element problems. Communications on Pure & Applied Analysis, 2003, 2 (3) : 297-310. doi: 10.3934/cpaa.2003.2.297 |
[13] |
Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602 |
[14] |
Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149 |
[15] |
Michal Beneš. Mixed initial-boundary value problem for the three-dimensional Navier-Stokes equations in polyhedral domains. Conference Publications, 2011, 2011 (Special) : 135-144. doi: 10.3934/proc.2011.2011.135 |
[16] |
Derrick Jones, Xu Zhang. A conforming-nonconforming mixed immersed finite element method for unsteady Stokes equations with moving interfaces. Electronic Research Archive, , () : -. doi: 10.3934/era.2021032 |
[17] |
Assyr Abdulle, Yun Bai, Gilles Vilmart. Reduced basis finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 91-118. doi: 10.3934/dcdss.2015.8.91 |
[18] |
Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic & Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59 |
[19] |
Jean-Pierre Raymond, Laetitia Thevenet. Boundary feedback stabilization of the two dimensional Navier-Stokes equations with finite dimensional controllers. Discrete & Continuous Dynamical Systems, 2010, 27 (3) : 1159-1187. doi: 10.3934/dcds.2010.27.1159 |
[20] |
Zdeněk Skalák. On the asymptotic decay of higher-order norms of the solutions to the Navier-Stokes equations in R3. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 361-370. doi: 10.3934/dcdss.2010.3.361 |
Impact Factor: 0.263
Tools
Metrics
Other articles
by authors
[Back to Top]