• Previous Article
    Asymptotic behavior of the one-dimensional compressible micropolar fluid model
  • ERA Home
  • This Issue
  • Next Article
    The sharp time decay rate of the isentropic Navier-Stokes system in $ {\mathop{\mathbb R\kern 0pt}\nolimits}^3 $
doi: 10.3934/era.2020128

Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM

Department of Mathematics, Ajou University, Suwon, 16499, Republic of Korea

* Corresponding author

Received  August 2020 Revised  September 2020 Published  December 2020

Fund Project: The author is supported by Basic Science Research Program through the National Research Foundation of Korea NRF-2016R1D1A1B03932219 and NRF-2019R1F1A1050231

An efficient computing method for a target velocity tracking problem of fluid flows is considered. We first adopts the Lagrange multipliers method to obtain the optimality system, and then designs a simple and effective feedback control law based on the relationship between the control $ {{\boldsymbol f}} $ and the adjoint variable $ {{\boldsymbol w}} $ in the optimality system. We consider a reduced order modeling (ROM) of this problem for real-time computing. In order to improve the existing ROM method, the deep learning technique, which is currently being actively researched, is applied. We review previous research results and some computational results are presented.

Citation: Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, doi: 10.3934/era.2020128
References:
[1]

F. Abergal and R. Temam, On some control problems in fluid mechanics, Theoret. Comput. Fluid Dynamics, 1 (1990), 303-325.  doi: 10.1007/BF00271794.  Google Scholar

[2] R. A. Adams, Sobolev Spaces, Academic Press, 1975.   Google Scholar
[3]

S. E. Ahmed, O. San, A. Rasheed and T. Iliescu, A long short-term memory embedding for hybrid uplifted reduced order models, Phys. D, 409 (2020), 132471, 16 pp. doi: 10.1016/j.physd.2020.132471.  Google Scholar

[4]

D. Amsallem, Interpolation on Manifolds of CFD-Based Fluid and Finite Element-Based Structural Reduced-Order Models for On-Line Aeroelastic Predictions, Ph. D. Thesis, Stanford University, 2010.  Google Scholar

[5]

P. BennerS. Gugercin and K. Willcox, A survey of projection-based model reduction methods for parametric dynamical systems, SIAM Rev., 57 (2015), 483-531.  doi: 10.1137/130932715.  Google Scholar

[6]

G. BerkoozP. Holmes and J. L. Lumley, The proper orthogonal decomposition in the analysis of turbulent flows, Annual review of fluid mechanics, 25 (1993), 539-575.   Google Scholar

[7]

S. BruntonB. Noack and P. Koumoutsakos, Machine Learning for Fluid Mechanics, Annu. Rev. Fluid Mech., 52 (2020), 477-508.  doi: 10.1146/annurev-fluid-010719-060214.  Google Scholar

[8]

J. BurkardtM. Gunzburger and H.-C. Lee, Centroidal voronoi tessellation-based reduced-order modeling of complex systems, SIAM J. Sci. Comput., 28 (2006), 459-484.  doi: 10.1137/5106482750342221x.  Google Scholar

[9]

J. BurkardtM. Gunzburger and H.-C. Lee, POD and CVT-based reduced-order modeling of Navier-Stokes flows, Comput. Methods Appl. Mech. Engrg., 196 (2006), 337-355.  doi: 10.1016/j.cma.2006.04.004.  Google Scholar

[10]

J. H. FaghmousA. BanerjeeandS. ShekharandM. SteinbachV. KumarA. R. Ganguly and N. Samatova, Theory-guided data science for climate change, Computer, 47 (2014), 74-78.  doi: 10.1109/MC.2014.335.  Google Scholar

[11]

J. Ffowcs-Williams and B. Zhao, Active control of vortex shedding, J. Fluids Struct., S3 (1989), 115-122.  doi: 10.1016/S0889-9746(89)90026-1.  Google Scholar

[12]

V. Girault and P. Raviart, Navier-Stokes Equations, North-Hollan, Amsterdam, 1979. Google Scholar

[13]

V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, Berlin, 1986. doi: 10.1007/978-3-642-61623-5.  Google Scholar

[14]

G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University, Baltimore, 1996.  Google Scholar

[15]

M. D. Gunzburger and L. S. Hou, Finite-dimensional approximation of a class of constrained nonlinear optimal control problems, SIAM J. Control Optim., 34 (1996), 1001-1043.  doi: 10.1137/S0363012994262361.  Google Scholar

[16]

M. Gunzburger and H.-C. Lee, Active control of vortex shedding, J. Appl. Mech., 63 (1996), 828-835.   Google Scholar

[17]

M. D. Gunzburger and S. Manservisi, Analysis and approximation of the velocity tracking problem for Navier-Stokes flows with distributed control, SIAM J. Numer. Anal., 37 (2000), 1481-1512.  doi: 10.1137/S0036142997329414.  Google Scholar

[18]

M. D. Gunzburger and S. Manservisi, The velocity tracking problem for Navier-Stokes flows with boundary control, SIAM J. Control Optim., 39 (2000), 594-634.  doi: 10.1137/S0363012999353771.  Google Scholar

[19]

M. D. Gunzburger and S. Manservisi, Analysis and approximation for linear feedback control for tracking the velocity in Navier-Stokes flows, Comput. Methods Appl. Mech. Engrg., 189 (2000), 803-823.  doi: 10.1016/S0045-7825(99)00344-8.  Google Scholar

[20]

F. Hecht, New development in FreeFem++, J. Numer. Math., 20 (2012), 251-265.  doi: 10.1515/jnum-2012-0013.  Google Scholar

[21]

L. S. Hou and Y. Yan, Dynamics for controlled Navier-Stokes systems with distributed controls, SIAM J. Control Optim., 35 (1997), 654-677.  doi: 10.1137/S0363012994274926.  Google Scholar

[22]

L. S. Hou and Y. Yan, Dynamics and approximations of a velocity tracking problem for the Navier-Stokes flows with piecewise distributed controls, SIAM J. Control Optim., 35 (1997), 1847-1885.  doi: 10.1137/S036301299529286X.  Google Scholar

[23]

A. KarpatneG. AtluriJ. H. FaghmousM. SteinbachA. BanerjeeA. GangulyS. ShekharN. Samatova and V. Kumar, Theory-guided data science: A new paradigm for scientific discovery from data, IEEE Trans. Knowl. Data Eng., 29 (2017), 2318-2331.  doi: 10.1109/TKDE.2017.2720168.  Google Scholar

[24]

A. J. Majda and D. Qi, Strategies for reduced-order models for predicting the statistical responses and uncertainty quantification in complex turbulent dynamical systems, SIAM Rev., 60 (2018), 491-549.  doi: 10.1137/16M1104664.  Google Scholar

[25]

S. Pawar, S. Ahmed, O. San and A. Rasheed, An evolve-then-correct reduced order model for hidden fluid dynamics. Mathematics, Mathematics, 8 (2020), 570. Google Scholar

[26]

S. Pawar, S. E. Ahmed, O. San and A. Rasheed, Data-driven recovery of hidden physics in reduced order modeling of fluid flows, preprint, arXiv: 1910.13909 doi: 10.1063/5.0002051.  Google Scholar

[27]

M. Rahman, S. Pawar, O. San, A. Rasheed and T. Iliescu, A non-intrusive reduced order modeling framework for quasi-geostrophic turbulence, preprint, arXiv: 1906.11617 Google Scholar

[28]

M. Rathinam and L. R. Petzold, A new look at proper orthogonal decomposition, SIAM J. Numer. Anal., 41 (2003), 1893-1925.  doi: 10.1137/S0036142901389049.  Google Scholar

[29]

L. Scarpa, Analysis and optimal velocity control of a stochastic convective Cahn-Hilliard equation, preprint, arXiv: 2007.14735 Google Scholar

[30]

L. Sirovich, Turbulence and the dynamics of coherent structures, part ⅰ: Coherent structures; part ⅱ: symmetries and transformations; part ⅲ: Dynamics and scaling, Quart. Appl. Math., 45 (1987), 561-590.  doi: 10.1090/qam/910464.  Google Scholar

[31]

M. Strazzullo, Z. Zainib, F. Ballarin and G. Rozza, Reduced order methods for parametrized non-linear and time dependent optimal flow control problems, towards applications in biomedical and environmental sciences, preprint, arXiv: 1912.07886 Google Scholar

[32]

Kailai Xu, Bella Shi and Shuyi Yin, Deep Learning for Partial Differential Equations, Stanford University, 2018. Google Scholar

show all references

References:
[1]

F. Abergal and R. Temam, On some control problems in fluid mechanics, Theoret. Comput. Fluid Dynamics, 1 (1990), 303-325.  doi: 10.1007/BF00271794.  Google Scholar

[2] R. A. Adams, Sobolev Spaces, Academic Press, 1975.   Google Scholar
[3]

S. E. Ahmed, O. San, A. Rasheed and T. Iliescu, A long short-term memory embedding for hybrid uplifted reduced order models, Phys. D, 409 (2020), 132471, 16 pp. doi: 10.1016/j.physd.2020.132471.  Google Scholar

[4]

D. Amsallem, Interpolation on Manifolds of CFD-Based Fluid and Finite Element-Based Structural Reduced-Order Models for On-Line Aeroelastic Predictions, Ph. D. Thesis, Stanford University, 2010.  Google Scholar

[5]

P. BennerS. Gugercin and K. Willcox, A survey of projection-based model reduction methods for parametric dynamical systems, SIAM Rev., 57 (2015), 483-531.  doi: 10.1137/130932715.  Google Scholar

[6]

G. BerkoozP. Holmes and J. L. Lumley, The proper orthogonal decomposition in the analysis of turbulent flows, Annual review of fluid mechanics, 25 (1993), 539-575.   Google Scholar

[7]

S. BruntonB. Noack and P. Koumoutsakos, Machine Learning for Fluid Mechanics, Annu. Rev. Fluid Mech., 52 (2020), 477-508.  doi: 10.1146/annurev-fluid-010719-060214.  Google Scholar

[8]

J. BurkardtM. Gunzburger and H.-C. Lee, Centroidal voronoi tessellation-based reduced-order modeling of complex systems, SIAM J. Sci. Comput., 28 (2006), 459-484.  doi: 10.1137/5106482750342221x.  Google Scholar

[9]

J. BurkardtM. Gunzburger and H.-C. Lee, POD and CVT-based reduced-order modeling of Navier-Stokes flows, Comput. Methods Appl. Mech. Engrg., 196 (2006), 337-355.  doi: 10.1016/j.cma.2006.04.004.  Google Scholar

[10]

J. H. FaghmousA. BanerjeeandS. ShekharandM. SteinbachV. KumarA. R. Ganguly and N. Samatova, Theory-guided data science for climate change, Computer, 47 (2014), 74-78.  doi: 10.1109/MC.2014.335.  Google Scholar

[11]

J. Ffowcs-Williams and B. Zhao, Active control of vortex shedding, J. Fluids Struct., S3 (1989), 115-122.  doi: 10.1016/S0889-9746(89)90026-1.  Google Scholar

[12]

V. Girault and P. Raviart, Navier-Stokes Equations, North-Hollan, Amsterdam, 1979. Google Scholar

[13]

V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, Berlin, 1986. doi: 10.1007/978-3-642-61623-5.  Google Scholar

[14]

G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University, Baltimore, 1996.  Google Scholar

[15]

M. D. Gunzburger and L. S. Hou, Finite-dimensional approximation of a class of constrained nonlinear optimal control problems, SIAM J. Control Optim., 34 (1996), 1001-1043.  doi: 10.1137/S0363012994262361.  Google Scholar

[16]

M. Gunzburger and H.-C. Lee, Active control of vortex shedding, J. Appl. Mech., 63 (1996), 828-835.   Google Scholar

[17]

M. D. Gunzburger and S. Manservisi, Analysis and approximation of the velocity tracking problem for Navier-Stokes flows with distributed control, SIAM J. Numer. Anal., 37 (2000), 1481-1512.  doi: 10.1137/S0036142997329414.  Google Scholar

[18]

M. D. Gunzburger and S. Manservisi, The velocity tracking problem for Navier-Stokes flows with boundary control, SIAM J. Control Optim., 39 (2000), 594-634.  doi: 10.1137/S0363012999353771.  Google Scholar

[19]

M. D. Gunzburger and S. Manservisi, Analysis and approximation for linear feedback control for tracking the velocity in Navier-Stokes flows, Comput. Methods Appl. Mech. Engrg., 189 (2000), 803-823.  doi: 10.1016/S0045-7825(99)00344-8.  Google Scholar

[20]

F. Hecht, New development in FreeFem++, J. Numer. Math., 20 (2012), 251-265.  doi: 10.1515/jnum-2012-0013.  Google Scholar

[21]

L. S. Hou and Y. Yan, Dynamics for controlled Navier-Stokes systems with distributed controls, SIAM J. Control Optim., 35 (1997), 654-677.  doi: 10.1137/S0363012994274926.  Google Scholar

[22]

L. S. Hou and Y. Yan, Dynamics and approximations of a velocity tracking problem for the Navier-Stokes flows with piecewise distributed controls, SIAM J. Control Optim., 35 (1997), 1847-1885.  doi: 10.1137/S036301299529286X.  Google Scholar

[23]

A. KarpatneG. AtluriJ. H. FaghmousM. SteinbachA. BanerjeeA. GangulyS. ShekharN. Samatova and V. Kumar, Theory-guided data science: A new paradigm for scientific discovery from data, IEEE Trans. Knowl. Data Eng., 29 (2017), 2318-2331.  doi: 10.1109/TKDE.2017.2720168.  Google Scholar

[24]

A. J. Majda and D. Qi, Strategies for reduced-order models for predicting the statistical responses and uncertainty quantification in complex turbulent dynamical systems, SIAM Rev., 60 (2018), 491-549.  doi: 10.1137/16M1104664.  Google Scholar

[25]

S. Pawar, S. Ahmed, O. San and A. Rasheed, An evolve-then-correct reduced order model for hidden fluid dynamics. Mathematics, Mathematics, 8 (2020), 570. Google Scholar

[26]

S. Pawar, S. E. Ahmed, O. San and A. Rasheed, Data-driven recovery of hidden physics in reduced order modeling of fluid flows, preprint, arXiv: 1910.13909 doi: 10.1063/5.0002051.  Google Scholar

[27]

M. Rahman, S. Pawar, O. San, A. Rasheed and T. Iliescu, A non-intrusive reduced order modeling framework for quasi-geostrophic turbulence, preprint, arXiv: 1906.11617 Google Scholar

[28]

M. Rathinam and L. R. Petzold, A new look at proper orthogonal decomposition, SIAM J. Numer. Anal., 41 (2003), 1893-1925.  doi: 10.1137/S0036142901389049.  Google Scholar

[29]

L. Scarpa, Analysis and optimal velocity control of a stochastic convective Cahn-Hilliard equation, preprint, arXiv: 2007.14735 Google Scholar

[30]

L. Sirovich, Turbulence and the dynamics of coherent structures, part ⅰ: Coherent structures; part ⅱ: symmetries and transformations; part ⅲ: Dynamics and scaling, Quart. Appl. Math., 45 (1987), 561-590.  doi: 10.1090/qam/910464.  Google Scholar

[31]

M. Strazzullo, Z. Zainib, F. Ballarin and G. Rozza, Reduced order methods for parametrized non-linear and time dependent optimal flow control problems, towards applications in biomedical and environmental sciences, preprint, arXiv: 1912.07886 Google Scholar

[32]

Kailai Xu, Bella Shi and Shuyi Yin, Deep Learning for Partial Differential Equations, Stanford University, 2018. Google Scholar

Figure 3.  $ || {\boldsymbol u}(t) - {\boldsymbol U}(t) ||_2 $, Compare between Figure 1 in [19] (left) and our results (right) where $ Re = 1 $
Figure 1.  Discrepancy of the trajectories between the FOM, ROM and least squares projected solutions after Galerkin projection
Figure 2.  Controlled (left) and target (right) flows at $ t = 0.0, 0.050,0.057,0.059 $ (left pair of columns) and $ t = 0.060, 0.061, $ $ 0.064, 0.5 $ (right pair of columns) for $ \gamma = 10 $
Figure 4.  $ || {\boldsymbol u} - {\boldsymbol U}||_{{\bf L}^2({\Omega})} $ for different control values $ \gamma $
Figure 5.  The POD reduced basis of cardinality 8 ($ \gamma = 10 $ Upper two rows and $ \gamma = 40 $ Down two rows). Basis 1, 2, 3, 4 from the left to the right (Top) and Basis 5, 6, 7, 8 from the left to the right (Bottom) in each two rows
Figure 6.  The singular values of the snapshot data matrix (right) for different control values $ \gamma $
Figure 7.  RMSE of Galerkin ROM (Upper 4 lines) and LS Projection (Lower 4 lines)
Figure 8.  LSTM Cell (left) and LSTM Training where $ r = 5 $
Figure 9.  Training and validation loss
Figure 10.  Temporal evolution of the 8 POD modal coefficients predicted by LS Projection, GP-ROM and GP-LSTM for $ \gamma = 50 $ using the basis from $ \gamma = 40 $
Figure 11.  RMSE of ROMs predicted by LS Projection, GP-ROM and GP-LSTM for $ \gamma = 50 $ using the basis of $ \gamma = 40 $
Table 1.  The first 8 singular values of the snapshot matrix
singular vales RIC($ \gamma=40 $) singular vales RIC($ \gamma=40 $)
1 4.83907e+02 99.2476% 2 2.41493e+00 99.8174%
3 3.98155e-01 99.9207% 4 2.02669e-01 99.9731%
5 6.01101e-02 99.9909% 6 1.65390e-02 99.9964%
7 6.20453e-03 99.9985% 8 2.51213e-03 99.9994%
singular vales RIC($ \gamma=40 $) singular vales RIC($ \gamma=40 $)
1 4.83907e+02 99.2476% 2 2.41493e+00 99.8174%
3 3.98155e-01 99.9207% 4 2.02669e-01 99.9731%
5 6.01101e-02 99.9909% 6 1.65390e-02 99.9964%
7 6.20453e-03 99.9985% 8 2.51213e-03 99.9994%
Table 2.  A list of hyperparameters utilized to train the LSTM network for numerical experiments
Variables Hyperparameters
Number of hidden layers 2
Number of neurons in each hidden layer 120
Number of lookbacks 5
Batch size 32
Epochs 1000
Activation functions in the LSTM layers tanh
Validation data set 20%
Loss function MSE
Optimizer ADAM
Variables Hyperparameters
Number of hidden layers 2
Number of neurons in each hidden layer 120
Number of lookbacks 5
Batch size 32
Epochs 1000
Activation functions in the LSTM layers tanh
Validation data set 20%
Loss function MSE
Optimizer ADAM
Table 3.  CPU time (in second) comparison for the different ROM frameworks investigated in this study and RMSE at $ t = 0.25 $
Framework Times RMSE(0.25)
FOM $ 1695.7 $ 0
LS-Proj 1.34053e-05
GP-ROM(8) 0.3268 3.77711e-03
GP-ROM (16) 1.7012 1.28362e-03
GP-LSTM(8) 0.6372 3.20970e-04
Framework Times RMSE(0.25)
FOM $ 1695.7 $ 0
LS-Proj 1.34053e-05
GP-ROM(8) 0.3268 3.77711e-03
GP-ROM (16) 1.7012 1.28362e-03
GP-LSTM(8) 0.6372 3.20970e-04
[1]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[2]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[3]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[4]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[5]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408

[6]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[7]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[8]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[9]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[10]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096

[11]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[12]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[13]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[14]

Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126

[15]

Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020  doi: 10.3934/jcd.2021006

[16]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[17]

Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020127

[18]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351

[19]

Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039

[20]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

 Impact Factor: 0.263

Metrics

  • PDF downloads (25)
  • HTML views (59)
  • Cited by (0)

Other articles
by authors

[Back to Top]