-
Previous Article
The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations
- ERA Home
- This Issue
-
Next Article
On recent progress of single-realization recoveries of random Schrödinger systems
Note on coisotropic Floer homology and leafwise fixed points
Utrecht University, Mathematics Institute, Budapestlaan 6, 3584 CD Utrecht, The Netherlands |
For an adiscal or monotone regular coisotropic submanifold $ N $ of a symplectic manifold I define its Floer homology to be the Floer homology of a certain Lagrangian embedding of $ N $. Given a Hamiltonian isotopy $ \varphi = ( \varphi^t) $ and a suitable almost complex structure, the corresponding Floer chain complex is generated by the $ (N, \varphi) $-contractible leafwise fixed points. I also outline the construction of a local Floer homology for an arbitrary closed coisotropic submanifold.
Results by Floer and Albers about Lagrangian Floer homology imply lower bounds on the number of leafwise fixed points. This reproduces earlier results of mine.
The first construction also gives rise to a Floer homology for a Boothby-Wang fibration, by applying it to the circle bundle inside the associated complex line bundle. This can be used to show that translated points exist.
References:
[1] |
P. Albers, A note on local floer homology, arXiv: math/0606600. Google Scholar |
[2] |
P. Albers, A Lagrangian Piunikhin-Salamon-Schwarz morphism and two comparison homomorphisms in Floer homology, Int. Math. Res. Not. IMRN, (2008), Art. ID rnm134, 56 pp.
doi: 10.1093/imrn/rnm134. |
[3] |
Yu. V. Chekanov,
Lagrangian intersections, symplectic energy, and areas of holomorphic curves, Duke Math. J., 95 (1998), 213-226.
doi: 10.1215/S0012-7094-98-09506-0. |
[4] |
K. Cieliebak, A. Floer, H. Hofer and K. Wysocki,
Applications of symplectic homology, II, Stability of the action spectrum, Math. Z., 223 (1996), 27-45.
doi: 10.1007/BF02621587. |
[5] |
A. Floer,
Morse theory for Lagrangian intersections, J. Differential Geom., 28 (1988), 513-547.
doi: 10.4310/jdg/1214442477. |
[6] |
A. Floer,
The unregularized gradient flow of the symplectic action, Comm. Pure Appl. Math., 41 (1988), 775-813.
doi: 10.1002/cpa.3160410603. |
[7] |
A. Floer,
Symplectic fixed points and holomorphic spheres, Comm. Math. Phys., 120 (1989), 575-611.
doi: 10.1007/BF01260388. |
[8] |
H. Geiges and A. I. Stipsicz,
Contact structures on product five-manifolds and fibre sums along circles, Math. Ann., 348 (2010), 195-210.
doi: 10.1007/s00208-009-0472-z. |
[9] |
V. L. Ginzburg and B. Z. Gürel,
Local Floer homology and the action gap, J. Symplectic Geom., 8 (2010), 323-357.
doi: 10.4310/JSG.2010.v8.n3.a4. |
[10] |
V. L. Ginzburg and B. Z. Gürel,
Fragility and persistence of leafwise intersections, Math. Z., 280 (2015), 989-1004.
doi: 10.1007/s00209-015-1459-y. |
[11] |
A. Kapustin and D. Orlov,
Remarks on $A$-branes, mirror symmetry, and the Fukaya category, J. Geom. Phys., 48 (2003), 84-99.
doi: 10.1016/S0393-0440(03)00026-3. |
[12] |
C.-M. Marle, Sous-variétés de rang constant d'une variété symplectique, Astérisque, 107–108, Soc. Math. France, Paris (1983), 69–86. |
[13] |
Y.-G. Oh,
Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. I., Comm. Pure Appl. Math., 46 (1993), 949-993.
doi: 10.1002/cpa.3160460702. |
[14] |
Y.-G. Oh, Addendum to: "Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. I.", Comm. Pure Appl. Math., 48 (1995), 1299-1302. Google Scholar |
[15] |
Y.-G. Oh, Floer cohomology, spectral sequences, and the Maslov class of Lagrangian embeddings, Internat. Math. Res. Notices, (1996), 305–346.
doi: 10.1155/S1073792896000219. |
[16] |
Y.-G. Oh, Localization of Floer homology of engulfed topological Hamiltonian loop, Commun. Inf. Syst., 13 (2013), no. 4, 399–443. Google Scholar |
[17] | Y.-G. Oh, Symplectic Topology and Floer Homology, Vol. 2, Floer homology and its applications, New Mathematical Monographs, 29, Cambridge University Press, Cambridge, 2015. Google Scholar |
[18] |
M. Poźniak, Floer homology, Novikov rings and clean intersections, Northern California Symplectic Geometry Seminar, 119–181, Amer. Math. Soc. Transl. Ser. 2, 196, Adv. Math. Sci., 45, Amer. Math. Soc., Providence, RI, 1999.
doi: 10.1090/trans2/196/08. |
[19] |
S. Sandon,
A Morse estimate for translated points of contactomorphisms of spheres and projective spaces, Geom. Dedicata, 165 (2013), 95-110.
doi: 10.1007/s10711-012-9741-1. |
[20] |
F. Ziltener,
Coisotropic submanifolds, leaf-wise fixed points, and presymplectic embeddings, J. Symplectic Geom., 8 (2010), 95-118.
doi: 10.4310/JSG.2010.v8.n1.a6. |
[21] |
F. Ziltener, A Maslov map for coisotropic submanifolds, leaf-wise fixed points and presymplectic non-embeddings, arXiv: 0911.1460. Google Scholar |
[22] |
F. Ziltener, Leafwise fixed points for $C^0$-small Hamiltonian flows, Int. Math. Res. Not. IMRN, (2019), 2411–2452.
doi: 10.1093/imrn/rnx182. |
show all references
References:
[1] |
P. Albers, A note on local floer homology, arXiv: math/0606600. Google Scholar |
[2] |
P. Albers, A Lagrangian Piunikhin-Salamon-Schwarz morphism and two comparison homomorphisms in Floer homology, Int. Math. Res. Not. IMRN, (2008), Art. ID rnm134, 56 pp.
doi: 10.1093/imrn/rnm134. |
[3] |
Yu. V. Chekanov,
Lagrangian intersections, symplectic energy, and areas of holomorphic curves, Duke Math. J., 95 (1998), 213-226.
doi: 10.1215/S0012-7094-98-09506-0. |
[4] |
K. Cieliebak, A. Floer, H. Hofer and K. Wysocki,
Applications of symplectic homology, II, Stability of the action spectrum, Math. Z., 223 (1996), 27-45.
doi: 10.1007/BF02621587. |
[5] |
A. Floer,
Morse theory for Lagrangian intersections, J. Differential Geom., 28 (1988), 513-547.
doi: 10.4310/jdg/1214442477. |
[6] |
A. Floer,
The unregularized gradient flow of the symplectic action, Comm. Pure Appl. Math., 41 (1988), 775-813.
doi: 10.1002/cpa.3160410603. |
[7] |
A. Floer,
Symplectic fixed points and holomorphic spheres, Comm. Math. Phys., 120 (1989), 575-611.
doi: 10.1007/BF01260388. |
[8] |
H. Geiges and A. I. Stipsicz,
Contact structures on product five-manifolds and fibre sums along circles, Math. Ann., 348 (2010), 195-210.
doi: 10.1007/s00208-009-0472-z. |
[9] |
V. L. Ginzburg and B. Z. Gürel,
Local Floer homology and the action gap, J. Symplectic Geom., 8 (2010), 323-357.
doi: 10.4310/JSG.2010.v8.n3.a4. |
[10] |
V. L. Ginzburg and B. Z. Gürel,
Fragility and persistence of leafwise intersections, Math. Z., 280 (2015), 989-1004.
doi: 10.1007/s00209-015-1459-y. |
[11] |
A. Kapustin and D. Orlov,
Remarks on $A$-branes, mirror symmetry, and the Fukaya category, J. Geom. Phys., 48 (2003), 84-99.
doi: 10.1016/S0393-0440(03)00026-3. |
[12] |
C.-M. Marle, Sous-variétés de rang constant d'une variété symplectique, Astérisque, 107–108, Soc. Math. France, Paris (1983), 69–86. |
[13] |
Y.-G. Oh,
Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. I., Comm. Pure Appl. Math., 46 (1993), 949-993.
doi: 10.1002/cpa.3160460702. |
[14] |
Y.-G. Oh, Addendum to: "Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. I.", Comm. Pure Appl. Math., 48 (1995), 1299-1302. Google Scholar |
[15] |
Y.-G. Oh, Floer cohomology, spectral sequences, and the Maslov class of Lagrangian embeddings, Internat. Math. Res. Notices, (1996), 305–346.
doi: 10.1155/S1073792896000219. |
[16] |
Y.-G. Oh, Localization of Floer homology of engulfed topological Hamiltonian loop, Commun. Inf. Syst., 13 (2013), no. 4, 399–443. Google Scholar |
[17] | Y.-G. Oh, Symplectic Topology and Floer Homology, Vol. 2, Floer homology and its applications, New Mathematical Monographs, 29, Cambridge University Press, Cambridge, 2015. Google Scholar |
[18] |
M. Poźniak, Floer homology, Novikov rings and clean intersections, Northern California Symplectic Geometry Seminar, 119–181, Amer. Math. Soc. Transl. Ser. 2, 196, Adv. Math. Sci., 45, Amer. Math. Soc., Providence, RI, 1999.
doi: 10.1090/trans2/196/08. |
[19] |
S. Sandon,
A Morse estimate for translated points of contactomorphisms of spheres and projective spaces, Geom. Dedicata, 165 (2013), 95-110.
doi: 10.1007/s10711-012-9741-1. |
[20] |
F. Ziltener,
Coisotropic submanifolds, leaf-wise fixed points, and presymplectic embeddings, J. Symplectic Geom., 8 (2010), 95-118.
doi: 10.4310/JSG.2010.v8.n1.a6. |
[21] |
F. Ziltener, A Maslov map for coisotropic submanifolds, leaf-wise fixed points and presymplectic non-embeddings, arXiv: 0911.1460. Google Scholar |
[22] |
F. Ziltener, Leafwise fixed points for $C^0$-small Hamiltonian flows, Int. Math. Res. Not. IMRN, (2019), 2411–2452.
doi: 10.1093/imrn/rnx182. |
[1] |
Nicholas Long. Fixed point shifts of inert involutions. Discrete & Continuous Dynamical Systems, 2009, 25 (4) : 1297-1317. doi: 10.3934/dcds.2009.25.1297 |
[2] |
Yakov Krasnov, Alexander Kononovich, Grigory Osharovich. On a structure of the fixed point set of homogeneous maps. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1017-1027. doi: 10.3934/dcdss.2013.6.1017 |
[3] |
Jorge Groisman. Expansive and fixed point free homeomorphisms of the plane. Discrete & Continuous Dynamical Systems, 2012, 32 (5) : 1709-1721. doi: 10.3934/dcds.2012.32.1709 |
[4] |
Yong Ji, Ercai Chen, Yunping Wang, Cao Zhao. Bowen entropy for fixed-point free flows. Discrete & Continuous Dynamical Systems, 2019, 39 (11) : 6231-6239. doi: 10.3934/dcds.2019271 |
[5] |
Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692 |
[6] |
Luis Hernández-Corbato, Francisco R. Ruiz del Portal. Fixed point indices of planar continuous maps. Discrete & Continuous Dynamical Systems, 2015, 35 (7) : 2979-2995. doi: 10.3934/dcds.2015.35.2979 |
[7] |
Antonio Garcia. Transition tori near an elliptic-fixed point. Discrete & Continuous Dynamical Systems, 2000, 6 (2) : 381-392. doi: 10.3934/dcds.2000.6.381 |
[8] |
Sonja Hohloch. Transport, flux and growth of homoclinic Floer homology. Discrete & Continuous Dynamical Systems, 2012, 32 (10) : 3587-3620. doi: 10.3934/dcds.2012.32.3587 |
[9] |
Cleon S. Barroso. The approximate fixed point property in Hausdorff topological vector spaces and applications. Discrete & Continuous Dynamical Systems, 2009, 25 (2) : 467-479. doi: 10.3934/dcds.2009.25.467 |
[10] |
Teck-Cheong Lim. On the largest common fixed point of a commuting family of isotone maps. Conference Publications, 2005, 2005 (Special) : 621-623. doi: 10.3934/proc.2005.2005.621 |
[11] |
Mircea Sofonea, Cezar Avramescu, Andaluzia Matei. A fixed point result with applications in the study of viscoplastic frictionless contact problems. Communications on Pure & Applied Analysis, 2008, 7 (3) : 645-658. doi: 10.3934/cpaa.2008.7.645 |
[12] |
Parin Chaipunya, Poom Kumam. Fixed point theorems for cyclic operators with application in Fractional integral inclusions with delays. Conference Publications, 2015, 2015 (special) : 248-257. doi: 10.3934/proc.2015.0248 |
[13] |
Dou Dou, Meng Fan, Hua Qiu. Topological entropy on subsets for fixed-point free flows. Discrete & Continuous Dynamical Systems, 2017, 37 (12) : 6319-6331. doi: 10.3934/dcds.2017273 |
[14] |
Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020320 |
[15] |
Ruhua Wang, Senjian An, Wanquan Liu, Ling Li. Fixed-point algorithms for inverse of residual rectifier neural networks. Mathematical Foundations of Computing, 2021, 4 (1) : 31-44. doi: 10.3934/mfc.2020024 |
[16] |
Mark S. Gockenbach, Akhtar A. Khan. Identification of Lamé parameters in linear elasticity: a fixed point approach. Journal of Industrial & Management Optimization, 2005, 1 (4) : 487-497. doi: 10.3934/jimo.2005.1.487 |
[17] |
Romain Aimino, Huyi Hu, Matthew Nicol, Andrei Török, Sandro Vaienti. Polynomial loss of memory for maps of the interval with a neutral fixed point. Discrete & Continuous Dynamical Systems, 2015, 35 (3) : 793-806. doi: 10.3934/dcds.2015.35.793 |
[18] |
Grzegorz Graff, Piotr Nowak-Przygodzki. Fixed point indices of iterations of $C^1$ maps in $R^3$. Discrete & Continuous Dynamical Systems, 2006, 16 (4) : 843-856. doi: 10.3934/dcds.2006.16.843 |
[19] |
Hans Koch. A renormalization group fixed point associated with the breakup of golden invariant tori. Discrete & Continuous Dynamical Systems, 2004, 11 (4) : 881-909. doi: 10.3934/dcds.2004.11.881 |
[20] |
Michael Usher. Floer homology in disk bundles and symplectically twisted geodesic flows. Journal of Modern Dynamics, 2009, 3 (1) : 61-101. doi: 10.3934/jmd.2009.3.61 |
Impact Factor: 0.263
Tools
Metrics
Other articles
by authors
[Back to Top]