-
Previous Article
The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations
- ERA Home
- This Issue
-
Next Article
On recent progress of single-realization recoveries of random Schrödinger systems
Note on coisotropic Floer homology and leafwise fixed points
Utrecht University, Mathematics Institute, Budapestlaan 6, 3584 CD Utrecht, The Netherlands |
For an adiscal or monotone regular coisotropic submanifold $ N $ of a symplectic manifold I define its Floer homology to be the Floer homology of a certain Lagrangian embedding of $ N $. Given a Hamiltonian isotopy $ \varphi = ( \varphi^t) $ and a suitable almost complex structure, the corresponding Floer chain complex is generated by the $ (N, \varphi) $-contractible leafwise fixed points. I also outline the construction of a local Floer homology for an arbitrary closed coisotropic submanifold.
Results by Floer and Albers about Lagrangian Floer homology imply lower bounds on the number of leafwise fixed points. This reproduces earlier results of mine.
The first construction also gives rise to a Floer homology for a Boothby-Wang fibration, by applying it to the circle bundle inside the associated complex line bundle. This can be used to show that translated points exist.
References:
[1] |
P. Albers, A note on local floer homology, arXiv: math/0606600. Google Scholar |
[2] |
P. Albers, A Lagrangian Piunikhin-Salamon-Schwarz morphism and two comparison homomorphisms in Floer homology, Int. Math. Res. Not. IMRN, (2008), Art. ID rnm134, 56 pp.
doi: 10.1093/imrn/rnm134. |
[3] |
Yu. V. Chekanov,
Lagrangian intersections, symplectic energy, and areas of holomorphic curves, Duke Math. J., 95 (1998), 213-226.
doi: 10.1215/S0012-7094-98-09506-0. |
[4] |
K. Cieliebak, A. Floer, H. Hofer and K. Wysocki,
Applications of symplectic homology, II, Stability of the action spectrum, Math. Z., 223 (1996), 27-45.
doi: 10.1007/BF02621587. |
[5] |
A. Floer,
Morse theory for Lagrangian intersections, J. Differential Geom., 28 (1988), 513-547.
doi: 10.4310/jdg/1214442477. |
[6] |
A. Floer,
The unregularized gradient flow of the symplectic action, Comm. Pure Appl. Math., 41 (1988), 775-813.
doi: 10.1002/cpa.3160410603. |
[7] |
A. Floer,
Symplectic fixed points and holomorphic spheres, Comm. Math. Phys., 120 (1989), 575-611.
doi: 10.1007/BF01260388. |
[8] |
H. Geiges and A. I. Stipsicz,
Contact structures on product five-manifolds and fibre sums along circles, Math. Ann., 348 (2010), 195-210.
doi: 10.1007/s00208-009-0472-z. |
[9] |
V. L. Ginzburg and B. Z. Gürel,
Local Floer homology and the action gap, J. Symplectic Geom., 8 (2010), 323-357.
doi: 10.4310/JSG.2010.v8.n3.a4. |
[10] |
V. L. Ginzburg and B. Z. Gürel,
Fragility and persistence of leafwise intersections, Math. Z., 280 (2015), 989-1004.
doi: 10.1007/s00209-015-1459-y. |
[11] |
A. Kapustin and D. Orlov,
Remarks on $A$-branes, mirror symmetry, and the Fukaya category, J. Geom. Phys., 48 (2003), 84-99.
doi: 10.1016/S0393-0440(03)00026-3. |
[12] |
C.-M. Marle, Sous-variétés de rang constant d'une variété symplectique, Astérisque, 107–108, Soc. Math. France, Paris (1983), 69–86. |
[13] |
Y.-G. Oh,
Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. I., Comm. Pure Appl. Math., 46 (1993), 949-993.
doi: 10.1002/cpa.3160460702. |
[14] |
Y.-G. Oh, Addendum to: "Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. I.", Comm. Pure Appl. Math., 48 (1995), 1299-1302. Google Scholar |
[15] |
Y.-G. Oh, Floer cohomology, spectral sequences, and the Maslov class of Lagrangian embeddings, Internat. Math. Res. Notices, (1996), 305–346.
doi: 10.1155/S1073792896000219. |
[16] |
Y.-G. Oh, Localization of Floer homology of engulfed topological Hamiltonian loop, Commun. Inf. Syst., 13 (2013), no. 4, 399–443. Google Scholar |
[17] | Y.-G. Oh, Symplectic Topology and Floer Homology, Vol. 2, Floer homology and its applications, New Mathematical Monographs, 29, Cambridge University Press, Cambridge, 2015. Google Scholar |
[18] |
M. Poźniak, Floer homology, Novikov rings and clean intersections, Northern California Symplectic Geometry Seminar, 119–181, Amer. Math. Soc. Transl. Ser. 2, 196, Adv. Math. Sci., 45, Amer. Math. Soc., Providence, RI, 1999.
doi: 10.1090/trans2/196/08. |
[19] |
S. Sandon,
A Morse estimate for translated points of contactomorphisms of spheres and projective spaces, Geom. Dedicata, 165 (2013), 95-110.
doi: 10.1007/s10711-012-9741-1. |
[20] |
F. Ziltener,
Coisotropic submanifolds, leaf-wise fixed points, and presymplectic embeddings, J. Symplectic Geom., 8 (2010), 95-118.
doi: 10.4310/JSG.2010.v8.n1.a6. |
[21] |
F. Ziltener, A Maslov map for coisotropic submanifolds, leaf-wise fixed points and presymplectic non-embeddings, arXiv: 0911.1460. Google Scholar |
[22] |
F. Ziltener, Leafwise fixed points for $C^0$-small Hamiltonian flows, Int. Math. Res. Not. IMRN, (2019), 2411–2452.
doi: 10.1093/imrn/rnx182. |
show all references
References:
[1] |
P. Albers, A note on local floer homology, arXiv: math/0606600. Google Scholar |
[2] |
P. Albers, A Lagrangian Piunikhin-Salamon-Schwarz morphism and two comparison homomorphisms in Floer homology, Int. Math. Res. Not. IMRN, (2008), Art. ID rnm134, 56 pp.
doi: 10.1093/imrn/rnm134. |
[3] |
Yu. V. Chekanov,
Lagrangian intersections, symplectic energy, and areas of holomorphic curves, Duke Math. J., 95 (1998), 213-226.
doi: 10.1215/S0012-7094-98-09506-0. |
[4] |
K. Cieliebak, A. Floer, H. Hofer and K. Wysocki,
Applications of symplectic homology, II, Stability of the action spectrum, Math. Z., 223 (1996), 27-45.
doi: 10.1007/BF02621587. |
[5] |
A. Floer,
Morse theory for Lagrangian intersections, J. Differential Geom., 28 (1988), 513-547.
doi: 10.4310/jdg/1214442477. |
[6] |
A. Floer,
The unregularized gradient flow of the symplectic action, Comm. Pure Appl. Math., 41 (1988), 775-813.
doi: 10.1002/cpa.3160410603. |
[7] |
A. Floer,
Symplectic fixed points and holomorphic spheres, Comm. Math. Phys., 120 (1989), 575-611.
doi: 10.1007/BF01260388. |
[8] |
H. Geiges and A. I. Stipsicz,
Contact structures on product five-manifolds and fibre sums along circles, Math. Ann., 348 (2010), 195-210.
doi: 10.1007/s00208-009-0472-z. |
[9] |
V. L. Ginzburg and B. Z. Gürel,
Local Floer homology and the action gap, J. Symplectic Geom., 8 (2010), 323-357.
doi: 10.4310/JSG.2010.v8.n3.a4. |
[10] |
V. L. Ginzburg and B. Z. Gürel,
Fragility and persistence of leafwise intersections, Math. Z., 280 (2015), 989-1004.
doi: 10.1007/s00209-015-1459-y. |
[11] |
A. Kapustin and D. Orlov,
Remarks on $A$-branes, mirror symmetry, and the Fukaya category, J. Geom. Phys., 48 (2003), 84-99.
doi: 10.1016/S0393-0440(03)00026-3. |
[12] |
C.-M. Marle, Sous-variétés de rang constant d'une variété symplectique, Astérisque, 107–108, Soc. Math. France, Paris (1983), 69–86. |
[13] |
Y.-G. Oh,
Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. I., Comm. Pure Appl. Math., 46 (1993), 949-993.
doi: 10.1002/cpa.3160460702. |
[14] |
Y.-G. Oh, Addendum to: "Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. I.", Comm. Pure Appl. Math., 48 (1995), 1299-1302. Google Scholar |
[15] |
Y.-G. Oh, Floer cohomology, spectral sequences, and the Maslov class of Lagrangian embeddings, Internat. Math. Res. Notices, (1996), 305–346.
doi: 10.1155/S1073792896000219. |
[16] |
Y.-G. Oh, Localization of Floer homology of engulfed topological Hamiltonian loop, Commun. Inf. Syst., 13 (2013), no. 4, 399–443. Google Scholar |
[17] | Y.-G. Oh, Symplectic Topology and Floer Homology, Vol. 2, Floer homology and its applications, New Mathematical Monographs, 29, Cambridge University Press, Cambridge, 2015. Google Scholar |
[18] |
M. Poźniak, Floer homology, Novikov rings and clean intersections, Northern California Symplectic Geometry Seminar, 119–181, Amer. Math. Soc. Transl. Ser. 2, 196, Adv. Math. Sci., 45, Amer. Math. Soc., Providence, RI, 1999.
doi: 10.1090/trans2/196/08. |
[19] |
S. Sandon,
A Morse estimate for translated points of contactomorphisms of spheres and projective spaces, Geom. Dedicata, 165 (2013), 95-110.
doi: 10.1007/s10711-012-9741-1. |
[20] |
F. Ziltener,
Coisotropic submanifolds, leaf-wise fixed points, and presymplectic embeddings, J. Symplectic Geom., 8 (2010), 95-118.
doi: 10.4310/JSG.2010.v8.n1.a6. |
[21] |
F. Ziltener, A Maslov map for coisotropic submanifolds, leaf-wise fixed points and presymplectic non-embeddings, arXiv: 0911.1460. Google Scholar |
[22] |
F. Ziltener, Leafwise fixed points for $C^0$-small Hamiltonian flows, Int. Math. Res. Not. IMRN, (2019), 2411–2452.
doi: 10.1093/imrn/rnx182. |
[1] |
Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020320 |
[2] |
Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020178 |
[3] |
Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020404 |
[4] |
Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115 |
[5] |
Sabira El Khalfaoui, Gábor P. Nagy. On the dimension of the subfield subcodes of 1-point Hermitian codes. Advances in Mathematics of Communications, 2021, 15 (2) : 219-226. doi: 10.3934/amc.2020054 |
[6] |
Balázs Kósa, Karol Mikula, Markjoe Olunna Uba, Antonia Weberling, Neophytos Christodoulou, Magdalena Zernicka-Goetz. 3D image segmentation supported by a point cloud. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 971-985. doi: 10.3934/dcdss.2020351 |
[7] |
Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020293 |
[8] |
Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264 |
[9] |
Lisa Hernandez Lucas. Properties of sets of Subspaces with Constant Intersection Dimension. Advances in Mathematics of Communications, 2021, 15 (1) : 191-206. doi: 10.3934/amc.2020052 |
[10] |
Sumit Kumar Debnath, Pantelimon Stǎnicǎ, Nibedita Kundu, Tanmay Choudhury. Secure and efficient multiparty private set intersection cardinality. Advances in Mathematics of Communications, 2021, 15 (2) : 365-386. doi: 10.3934/amc.2020071 |
[11] |
Xin Zhang, Jie Xiong, Shuaiqi Zhang. Optimal reinsurance-investment and dividends problem with fixed transaction costs. Journal of Industrial & Management Optimization, 2021, 17 (2) : 981-999. doi: 10.3934/jimo.2020008 |
[12] |
Wenyuan Wang, Ran Xu. General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020179 |
Impact Factor: 0.263
Tools
Metrics
Other articles
by authors
[Back to Top]