doi: 10.3934/era.2021001

Note on coisotropic Floer homology and leafwise fixed points

Utrecht University, Mathematics Institute, Budapestlaan 6, 3584 CD Utrecht, The Netherlands

Received  November 2019 Revised  September 2020 Published  January 2021

For an adiscal or monotone regular coisotropic submanifold $ N $ of a symplectic manifold I define its Floer homology to be the Floer homology of a certain Lagrangian embedding of $ N $. Given a Hamiltonian isotopy $ \varphi = ( \varphi^t) $ and a suitable almost complex structure, the corresponding Floer chain complex is generated by the $ (N, \varphi) $-contractible leafwise fixed points. I also outline the construction of a local Floer homology for an arbitrary closed coisotropic submanifold.

Results by Floer and Albers about Lagrangian Floer homology imply lower bounds on the number of leafwise fixed points. This reproduces earlier results of mine.

The first construction also gives rise to a Floer homology for a Boothby-Wang fibration, by applying it to the circle bundle inside the associated complex line bundle. This can be used to show that translated points exist.

Citation: Fabian Ziltener. Note on coisotropic Floer homology and leafwise fixed points. Electronic Research Archive, doi: 10.3934/era.2021001
References:
[1]

P. Albers, A note on local floer homology, arXiv: math/0606600. Google Scholar

[2]

P. Albers, A Lagrangian Piunikhin-Salamon-Schwarz morphism and two comparison homomorphisms in Floer homology, Int. Math. Res. Not. IMRN, (2008), Art. ID rnm134, 56 pp. doi: 10.1093/imrn/rnm134.  Google Scholar

[3]

Yu. V. Chekanov, Lagrangian intersections, symplectic energy, and areas of holomorphic curves, Duke Math. J., 95 (1998), 213-226.  doi: 10.1215/S0012-7094-98-09506-0.  Google Scholar

[4]

K. CieliebakA. FloerH. Hofer and K. Wysocki, Applications of symplectic homology, II, Stability of the action spectrum, Math. Z., 223 (1996), 27-45.  doi: 10.1007/BF02621587.  Google Scholar

[5]

A. Floer, Morse theory for Lagrangian intersections, J. Differential Geom., 28 (1988), 513-547.  doi: 10.4310/jdg/1214442477.  Google Scholar

[6]

A. Floer, The unregularized gradient flow of the symplectic action, Comm. Pure Appl. Math., 41 (1988), 775-813.  doi: 10.1002/cpa.3160410603.  Google Scholar

[7]

A. Floer, Symplectic fixed points and holomorphic spheres, Comm. Math. Phys., 120 (1989), 575-611.  doi: 10.1007/BF01260388.  Google Scholar

[8]

H. Geiges and A. I. Stipsicz, Contact structures on product five-manifolds and fibre sums along circles, Math. Ann., 348 (2010), 195-210.  doi: 10.1007/s00208-009-0472-z.  Google Scholar

[9]

V. L. Ginzburg and B. Z. Gürel, Local Floer homology and the action gap, J. Symplectic Geom., 8 (2010), 323-357.  doi: 10.4310/JSG.2010.v8.n3.a4.  Google Scholar

[10]

V. L. Ginzburg and B. Z. Gürel, Fragility and persistence of leafwise intersections, Math. Z., 280 (2015), 989-1004.  doi: 10.1007/s00209-015-1459-y.  Google Scholar

[11]

A. Kapustin and D. Orlov, Remarks on $A$-branes, mirror symmetry, and the Fukaya category, J. Geom. Phys., 48 (2003), 84-99.  doi: 10.1016/S0393-0440(03)00026-3.  Google Scholar

[12]

C.-M. Marle, Sous-variétés de rang constant d'une variété symplectique, Astérisque, 107–108, Soc. Math. France, Paris (1983), 69–86.  Google Scholar

[13]

Y.-G. Oh, Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. I., Comm. Pure Appl. Math., 46 (1993), 949-993.  doi: 10.1002/cpa.3160460702.  Google Scholar

[14]

Y.-G. Oh, Addendum to: "Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. I.", Comm. Pure Appl. Math., 48 (1995), 1299-1302.   Google Scholar

[15]

Y.-G. Oh, Floer cohomology, spectral sequences, and the Maslov class of Lagrangian embeddings, Internat. Math. Res. Notices, (1996), 305–346. doi: 10.1155/S1073792896000219.  Google Scholar

[16]

Y.-G. Oh, Localization of Floer homology of engulfed topological Hamiltonian loop, Commun. Inf. Syst., 13 (2013), no. 4, 399–443. Google Scholar

[17] Y.-G. Oh, Symplectic Topology and Floer Homology, Vol. 2, Floer homology and its applications, New Mathematical Monographs, 29, Cambridge University Press, Cambridge, 2015.   Google Scholar
[18]

M. Poźniak, Floer homology, Novikov rings and clean intersections, Northern California Symplectic Geometry Seminar, 119–181, Amer. Math. Soc. Transl. Ser. 2, 196, Adv. Math. Sci., 45, Amer. Math. Soc., Providence, RI, 1999. doi: 10.1090/trans2/196/08.  Google Scholar

[19]

S. Sandon, A Morse estimate for translated points of contactomorphisms of spheres and projective spaces, Geom. Dedicata, 165 (2013), 95-110.  doi: 10.1007/s10711-012-9741-1.  Google Scholar

[20]

F. Ziltener, Coisotropic submanifolds, leaf-wise fixed points, and presymplectic embeddings, J. Symplectic Geom., 8 (2010), 95-118.  doi: 10.4310/JSG.2010.v8.n1.a6.  Google Scholar

[21]

F. Ziltener, A Maslov map for coisotropic submanifolds, leaf-wise fixed points and presymplectic non-embeddings, arXiv: 0911.1460. Google Scholar

[22]

F. Ziltener, Leafwise fixed points for $C^0$-small Hamiltonian flows, Int. Math. Res. Not. IMRN, (2019), 2411–2452. doi: 10.1093/imrn/rnx182.  Google Scholar

show all references

References:
[1]

P. Albers, A note on local floer homology, arXiv: math/0606600. Google Scholar

[2]

P. Albers, A Lagrangian Piunikhin-Salamon-Schwarz morphism and two comparison homomorphisms in Floer homology, Int. Math. Res. Not. IMRN, (2008), Art. ID rnm134, 56 pp. doi: 10.1093/imrn/rnm134.  Google Scholar

[3]

Yu. V. Chekanov, Lagrangian intersections, symplectic energy, and areas of holomorphic curves, Duke Math. J., 95 (1998), 213-226.  doi: 10.1215/S0012-7094-98-09506-0.  Google Scholar

[4]

K. CieliebakA. FloerH. Hofer and K. Wysocki, Applications of symplectic homology, II, Stability of the action spectrum, Math. Z., 223 (1996), 27-45.  doi: 10.1007/BF02621587.  Google Scholar

[5]

A. Floer, Morse theory for Lagrangian intersections, J. Differential Geom., 28 (1988), 513-547.  doi: 10.4310/jdg/1214442477.  Google Scholar

[6]

A. Floer, The unregularized gradient flow of the symplectic action, Comm. Pure Appl. Math., 41 (1988), 775-813.  doi: 10.1002/cpa.3160410603.  Google Scholar

[7]

A. Floer, Symplectic fixed points and holomorphic spheres, Comm. Math. Phys., 120 (1989), 575-611.  doi: 10.1007/BF01260388.  Google Scholar

[8]

H. Geiges and A. I. Stipsicz, Contact structures on product five-manifolds and fibre sums along circles, Math. Ann., 348 (2010), 195-210.  doi: 10.1007/s00208-009-0472-z.  Google Scholar

[9]

V. L. Ginzburg and B. Z. Gürel, Local Floer homology and the action gap, J. Symplectic Geom., 8 (2010), 323-357.  doi: 10.4310/JSG.2010.v8.n3.a4.  Google Scholar

[10]

V. L. Ginzburg and B. Z. Gürel, Fragility and persistence of leafwise intersections, Math. Z., 280 (2015), 989-1004.  doi: 10.1007/s00209-015-1459-y.  Google Scholar

[11]

A. Kapustin and D. Orlov, Remarks on $A$-branes, mirror symmetry, and the Fukaya category, J. Geom. Phys., 48 (2003), 84-99.  doi: 10.1016/S0393-0440(03)00026-3.  Google Scholar

[12]

C.-M. Marle, Sous-variétés de rang constant d'une variété symplectique, Astérisque, 107–108, Soc. Math. France, Paris (1983), 69–86.  Google Scholar

[13]

Y.-G. Oh, Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. I., Comm. Pure Appl. Math., 46 (1993), 949-993.  doi: 10.1002/cpa.3160460702.  Google Scholar

[14]

Y.-G. Oh, Addendum to: "Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. I.", Comm. Pure Appl. Math., 48 (1995), 1299-1302.   Google Scholar

[15]

Y.-G. Oh, Floer cohomology, spectral sequences, and the Maslov class of Lagrangian embeddings, Internat. Math. Res. Notices, (1996), 305–346. doi: 10.1155/S1073792896000219.  Google Scholar

[16]

Y.-G. Oh, Localization of Floer homology of engulfed topological Hamiltonian loop, Commun. Inf. Syst., 13 (2013), no. 4, 399–443. Google Scholar

[17] Y.-G. Oh, Symplectic Topology and Floer Homology, Vol. 2, Floer homology and its applications, New Mathematical Monographs, 29, Cambridge University Press, Cambridge, 2015.   Google Scholar
[18]

M. Poźniak, Floer homology, Novikov rings and clean intersections, Northern California Symplectic Geometry Seminar, 119–181, Amer. Math. Soc. Transl. Ser. 2, 196, Adv. Math. Sci., 45, Amer. Math. Soc., Providence, RI, 1999. doi: 10.1090/trans2/196/08.  Google Scholar

[19]

S. Sandon, A Morse estimate for translated points of contactomorphisms of spheres and projective spaces, Geom. Dedicata, 165 (2013), 95-110.  doi: 10.1007/s10711-012-9741-1.  Google Scholar

[20]

F. Ziltener, Coisotropic submanifolds, leaf-wise fixed points, and presymplectic embeddings, J. Symplectic Geom., 8 (2010), 95-118.  doi: 10.4310/JSG.2010.v8.n1.a6.  Google Scholar

[21]

F. Ziltener, A Maslov map for coisotropic submanifolds, leaf-wise fixed points and presymplectic non-embeddings, arXiv: 0911.1460. Google Scholar

[22]

F. Ziltener, Leafwise fixed points for $C^0$-small Hamiltonian flows, Int. Math. Res. Not. IMRN, (2019), 2411–2452. doi: 10.1093/imrn/rnx182.  Google Scholar

[1]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[2]

Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020178

[3]

Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020404

[4]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[5]

Sabira El Khalfaoui, Gábor P. Nagy. On the dimension of the subfield subcodes of 1-point Hermitian codes. Advances in Mathematics of Communications, 2021, 15 (2) : 219-226. doi: 10.3934/amc.2020054

[6]

Balázs Kósa, Karol Mikula, Markjoe Olunna Uba, Antonia Weberling, Neophytos Christodoulou, Magdalena Zernicka-Goetz. 3D image segmentation supported by a point cloud. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 971-985. doi: 10.3934/dcdss.2020351

[7]

Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020293

[8]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[9]

Lisa Hernandez Lucas. Properties of sets of Subspaces with Constant Intersection Dimension. Advances in Mathematics of Communications, 2021, 15 (1) : 191-206. doi: 10.3934/amc.2020052

[10]

Sumit Kumar Debnath, Pantelimon Stǎnicǎ, Nibedita Kundu, Tanmay Choudhury. Secure and efficient multiparty private set intersection cardinality. Advances in Mathematics of Communications, 2021, 15 (2) : 365-386. doi: 10.3934/amc.2020071

[11]

Xin Zhang, Jie Xiong, Shuaiqi Zhang. Optimal reinsurance-investment and dividends problem with fixed transaction costs. Journal of Industrial & Management Optimization, 2021, 17 (2) : 981-999. doi: 10.3934/jimo.2020008

[12]

Wenyuan Wang, Ran Xu. General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020179

 Impact Factor: 0.263

Article outline

[Back to Top]