• Previous Article
    Finite/fixed-time synchronization for complex networks via quantized adaptive control
  • ERA Home
  • This Issue
  • Next Article
    $ C^* $-algebras associated with asymptotic equivalence relations defined by hyperbolic toral automorphisms
doi: 10.3934/era.2021003

Global stability of traveling waves for a spatially discrete diffusion system with time delay

College of Mathematics and Statistics, Northwest Normal University, Lanzhou, Gansu 730070, China

* Corresponding author: Guo-Bao Zhang

Received  September 2020 Revised  November 2020 Published  January 2021

Fund Project: The second author is supported by NSF of China (11861056)

This article deals with the global stability of traveling waves of a spatially discrete diffusion system with time delay and without quasi-monotonicity. Using the Fourier transform and the weighted energy method with a suitably selected weighted function, we prove that the monotone or non-monotone traveling waves are exponentially stable in $ L^\infty(\mathbb{R})\times L^\infty(\mathbb{R}) $ with the exponential convergence rate $ e^{-\mu t} $ for some constant $ \mu>0 $.

Citation: Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, doi: 10.3934/era.2021003
References:
[1]

X. Chen and J.-S. Guo, Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations, J. Differential Equations, 184 (2002), 549-569.  doi: 10.1006/jdeq.2001.4153.  Google Scholar

[2]

G.-S. ChenS.-L. Wu and C.-H. Hsu, Stability of traveling wavefronts for a discrete diffusive competition system with three species, J. Math. Anal. Appl., 474 (2019), 909-930.  doi: 10.1016/j.jmaa.2019.01.079.  Google Scholar

[3]

I.-L. ChernM. MeiX. Yang and Q. Zhang, Stability of non-monotone critical traveling waves for reaction-diffusion equations with time-delay, J. Differential Equations, 259 (2015), 1503-1541.  doi: 10.1016/j.jde.2015.03.003.  Google Scholar

[4]

S. A. Gourley and Y. Kuang, Wavefronts and global stability in a time-delayed population model with stage structure, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 1563-1579.  doi: 10.1098/rspa.2002.1094.  Google Scholar

[5]

S. Guo and J. Zimmer, Stability of traveling wavefronts in discrete reaction-diffusion equations with nonlocal delay effects, Nonlinearity, 28 (2015), 463-492.  doi: 10.1088/0951-7715/28/2/463.  Google Scholar

[6]

C.-H. HsuJ.-J. Lin and T.-S. Yang, Traveling wave solutions for delayed lattice reaction-diffusion systems, IMA J. Appl. Math., 80 (2015), 302-323.  doi: 10.1093/imamat/hxt039.  Google Scholar

[7]

C.-H. HsuT.-S. Yang and Z. Yu, Existence and exponential stability of traveling waves for delayed reaction-diffusion systems, Nonlinearity, 31 (2018), 838-863.  doi: 10.1088/1361-6544/aa99a1.  Google Scholar

[8]

C. Hu and B. Li, Spatial dynamics for lattice differential equations with a shifting habitat, J. Differential Equations, 259 (2015), 1967-1989.  doi: 10.1016/j.jde.2015.03.025.  Google Scholar

[9]

Y. Li, W.-T. Li and Y.-R. Yang, Stability of traveling waves of a diffusive susceptible-infective-removed (SIR) epidemic model, J. Math. Phys., 57 (2016), 041504, 28 pp. doi: 10.1063/1.4947106.  Google Scholar

[10]

C.-K. LinC.-T. LinY. Lin and M. Mei, Exponential stability of nonmonotone traveling waves for Nicholson's blowflies equation, SIAM J. Math. Anal., 46 (2014), 1053-1084.  doi: 10.1137/120904391.  Google Scholar

[11]

Z. MaR. YuanY. Wang and X. Wu, Multidimensional stability of planar traveling waves for the delayed nonlocal dispersal competitive Lotka-Volterra system, Commu. Pure Appl. Anal., 18 (2019), 2069-2091.  doi: 10.3934/cpaa.2019093.  Google Scholar

[12]

M. MeiC.-K. LinC.-T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation: (I) local nonlinearity, J. Differential Equations, 247 (2009), 495-510.  doi: 10.1016/j.jde.2008.12.026.  Google Scholar

[13]

M. Mei and J. W.-H. So, Stability of strong traveling waves for a nonlocal time-delayed reaction-diffusion equation, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 551-568.  doi: 10.1017/S0308210506000333.  Google Scholar

[14]

M. MeiJ. W.-H. SoM. Y. Li and S. S. P. Shen, Asymptotic stability of traveling waves for the Nicholson's blowflies equation with diffusion, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 579-594.  doi: 10.1017/S0308210500003358.  Google Scholar

[15]

M. MeiK. Zhang and Q. Zhang, Global stability of traveling waves with oscillations for time-delayed reaction-diffusion equations, Int. J. Numer. Anal. Model., 16 (2019), 375-397.   Google Scholar

[16]

H. L. Smith and X.-Q. Zhao, Global asymptotical stability of traveling waves in delayed reaction-diffusion equations, SIAM J. Math. Anal., 31 (2000), 514-534.  doi: 10.1137/S0036141098346785.  Google Scholar

[17]

T. Su and G.-B. Zhang, Global stability of non-monotone noncritical traveling waves for a discrete diffusion equation with a convolution type nonlinearity, Taiwanese J. Math., 24 (2020), 937-957.  doi: 10.11650/tjm/190901.  Google Scholar

[18]

S. Su and G.-B. Zhang, Global stability of traveling waves for delay reaction-diffusion systems without quasi-momotonicity, Electron. J. Differential Equations, (2020), Paper No. 46, 18 pp.  Google Scholar

[19]

G. Tian and G.-B. Zhang, Stability of traveling wavefronts for a discrete diffusive Lotka-Volterra competition system, J. Math. Anal. Appl., 447 (2017), 222-242.  doi: 10.1016/j.jmaa.2016.10.012.  Google Scholar

[20]

G. TianG. Zhang and Z. Yang, Stability of nonmonotone critical traveling waves for spatially discrete reaction-diffusion equations with time delay, Turkish J. Math., 41 (2017), 655-680.  doi: 10.3906/mat-1601-19.  Google Scholar

[21]

S.-L. Wu and S.-Y. Liu, Existence and uniqueness of traveling waves for non-monotone integral equations with application, J. Math. Anal. Appl., 365 (2010), 729-741.  doi: 10.1016/j.jmaa.2009.11.028.  Google Scholar

[22]

S.-L. WuH.-Q. Zhao and S.-Y. Liu, Asymptotic stability of traveling waves for delayed reaction-diffusion equations with crossing-monostability, Z. Angew. Math. Phys., 62 (2011), 377-397.  doi: 10.1007/s00033-010-0112-1.  Google Scholar

[23]

T. XuS. JiR. HuangM. Mei and J. Yin, Theoretical and numerical studies on global stability of traveling waves with oscillation for time-delayed nonlocal dispersion equations, Int. J. Numer. Anal. Model., 17 (2020), 68-86.   Google Scholar

[24]

Y.-R. YangW.-T. Li and S.-L. Wu, Stability of traveling waves in a monostable delayed system without quasi-monotonicity, Nonlinear Anal. Real World Appl., 14 (2013), 1511-1526.  doi: 10.1016/j.nonrwa.2012.10.015.  Google Scholar

[25]

Z. Yang and G. Zhang, Stability of non-monotone traveling waves for a discrete diffusion equation with monostable convolution type nonlinearity, Sci. China Math., 61 (2018), 1789-1806.  doi: 10.1007/s11425-017-9175-2.  Google Scholar

[26]

Z.-X. YangG.-B. ZhangG. Tian and Z. Feng, Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay, Discrete Contin. Dyn. Syst. Ser. S, 10 (2017), 581-603.  doi: 10.3934/dcdss.2017029.  Google Scholar

[27]

Z. Yu and C.-H. Hsu, Wave propagation and its stability for a class of discrete diffusion systems, Z. Angew. Math. Phys., 71 (2020), 194. doi: 10.1007/s00033-020-01423-4.  Google Scholar

[28]

G.-B. Zhang, Global stability of non-monotone traveling wave solutions for a nonlocal dispersal equation with time delay, J. Math. Anal. Appl., 475 (2019), 605-627.  doi: 10.1016/j.jmaa.2019.02.058.  Google Scholar

show all references

References:
[1]

X. Chen and J.-S. Guo, Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations, J. Differential Equations, 184 (2002), 549-569.  doi: 10.1006/jdeq.2001.4153.  Google Scholar

[2]

G.-S. ChenS.-L. Wu and C.-H. Hsu, Stability of traveling wavefronts for a discrete diffusive competition system with three species, J. Math. Anal. Appl., 474 (2019), 909-930.  doi: 10.1016/j.jmaa.2019.01.079.  Google Scholar

[3]

I.-L. ChernM. MeiX. Yang and Q. Zhang, Stability of non-monotone critical traveling waves for reaction-diffusion equations with time-delay, J. Differential Equations, 259 (2015), 1503-1541.  doi: 10.1016/j.jde.2015.03.003.  Google Scholar

[4]

S. A. Gourley and Y. Kuang, Wavefronts and global stability in a time-delayed population model with stage structure, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 1563-1579.  doi: 10.1098/rspa.2002.1094.  Google Scholar

[5]

S. Guo and J. Zimmer, Stability of traveling wavefronts in discrete reaction-diffusion equations with nonlocal delay effects, Nonlinearity, 28 (2015), 463-492.  doi: 10.1088/0951-7715/28/2/463.  Google Scholar

[6]

C.-H. HsuJ.-J. Lin and T.-S. Yang, Traveling wave solutions for delayed lattice reaction-diffusion systems, IMA J. Appl. Math., 80 (2015), 302-323.  doi: 10.1093/imamat/hxt039.  Google Scholar

[7]

C.-H. HsuT.-S. Yang and Z. Yu, Existence and exponential stability of traveling waves for delayed reaction-diffusion systems, Nonlinearity, 31 (2018), 838-863.  doi: 10.1088/1361-6544/aa99a1.  Google Scholar

[8]

C. Hu and B. Li, Spatial dynamics for lattice differential equations with a shifting habitat, J. Differential Equations, 259 (2015), 1967-1989.  doi: 10.1016/j.jde.2015.03.025.  Google Scholar

[9]

Y. Li, W.-T. Li and Y.-R. Yang, Stability of traveling waves of a diffusive susceptible-infective-removed (SIR) epidemic model, J. Math. Phys., 57 (2016), 041504, 28 pp. doi: 10.1063/1.4947106.  Google Scholar

[10]

C.-K. LinC.-T. LinY. Lin and M. Mei, Exponential stability of nonmonotone traveling waves for Nicholson's blowflies equation, SIAM J. Math. Anal., 46 (2014), 1053-1084.  doi: 10.1137/120904391.  Google Scholar

[11]

Z. MaR. YuanY. Wang and X. Wu, Multidimensional stability of planar traveling waves for the delayed nonlocal dispersal competitive Lotka-Volterra system, Commu. Pure Appl. Anal., 18 (2019), 2069-2091.  doi: 10.3934/cpaa.2019093.  Google Scholar

[12]

M. MeiC.-K. LinC.-T. Lin and J. W.-H. So, Traveling wavefronts for time-delayed reaction-diffusion equation: (I) local nonlinearity, J. Differential Equations, 247 (2009), 495-510.  doi: 10.1016/j.jde.2008.12.026.  Google Scholar

[13]

M. Mei and J. W.-H. So, Stability of strong traveling waves for a nonlocal time-delayed reaction-diffusion equation, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 551-568.  doi: 10.1017/S0308210506000333.  Google Scholar

[14]

M. MeiJ. W.-H. SoM. Y. Li and S. S. P. Shen, Asymptotic stability of traveling waves for the Nicholson's blowflies equation with diffusion, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 579-594.  doi: 10.1017/S0308210500003358.  Google Scholar

[15]

M. MeiK. Zhang and Q. Zhang, Global stability of traveling waves with oscillations for time-delayed reaction-diffusion equations, Int. J. Numer. Anal. Model., 16 (2019), 375-397.   Google Scholar

[16]

H. L. Smith and X.-Q. Zhao, Global asymptotical stability of traveling waves in delayed reaction-diffusion equations, SIAM J. Math. Anal., 31 (2000), 514-534.  doi: 10.1137/S0036141098346785.  Google Scholar

[17]

T. Su and G.-B. Zhang, Global stability of non-monotone noncritical traveling waves for a discrete diffusion equation with a convolution type nonlinearity, Taiwanese J. Math., 24 (2020), 937-957.  doi: 10.11650/tjm/190901.  Google Scholar

[18]

S. Su and G.-B. Zhang, Global stability of traveling waves for delay reaction-diffusion systems without quasi-momotonicity, Electron. J. Differential Equations, (2020), Paper No. 46, 18 pp.  Google Scholar

[19]

G. Tian and G.-B. Zhang, Stability of traveling wavefronts for a discrete diffusive Lotka-Volterra competition system, J. Math. Anal. Appl., 447 (2017), 222-242.  doi: 10.1016/j.jmaa.2016.10.012.  Google Scholar

[20]

G. TianG. Zhang and Z. Yang, Stability of nonmonotone critical traveling waves for spatially discrete reaction-diffusion equations with time delay, Turkish J. Math., 41 (2017), 655-680.  doi: 10.3906/mat-1601-19.  Google Scholar

[21]

S.-L. Wu and S.-Y. Liu, Existence and uniqueness of traveling waves for non-monotone integral equations with application, J. Math. Anal. Appl., 365 (2010), 729-741.  doi: 10.1016/j.jmaa.2009.11.028.  Google Scholar

[22]

S.-L. WuH.-Q. Zhao and S.-Y. Liu, Asymptotic stability of traveling waves for delayed reaction-diffusion equations with crossing-monostability, Z. Angew. Math. Phys., 62 (2011), 377-397.  doi: 10.1007/s00033-010-0112-1.  Google Scholar

[23]

T. XuS. JiR. HuangM. Mei and J. Yin, Theoretical and numerical studies on global stability of traveling waves with oscillation for time-delayed nonlocal dispersion equations, Int. J. Numer. Anal. Model., 17 (2020), 68-86.   Google Scholar

[24]

Y.-R. YangW.-T. Li and S.-L. Wu, Stability of traveling waves in a monostable delayed system without quasi-monotonicity, Nonlinear Anal. Real World Appl., 14 (2013), 1511-1526.  doi: 10.1016/j.nonrwa.2012.10.015.  Google Scholar

[25]

Z. Yang and G. Zhang, Stability of non-monotone traveling waves for a discrete diffusion equation with monostable convolution type nonlinearity, Sci. China Math., 61 (2018), 1789-1806.  doi: 10.1007/s11425-017-9175-2.  Google Scholar

[26]

Z.-X. YangG.-B. ZhangG. Tian and Z. Feng, Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay, Discrete Contin. Dyn. Syst. Ser. S, 10 (2017), 581-603.  doi: 10.3934/dcdss.2017029.  Google Scholar

[27]

Z. Yu and C.-H. Hsu, Wave propagation and its stability for a class of discrete diffusion systems, Z. Angew. Math. Phys., 71 (2020), 194. doi: 10.1007/s00033-020-01423-4.  Google Scholar

[28]

G.-B. Zhang, Global stability of non-monotone traveling wave solutions for a nonlocal dispersal equation with time delay, J. Math. Anal. Appl., 475 (2019), 605-627.  doi: 10.1016/j.jmaa.2019.02.058.  Google Scholar

[1]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[2]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[3]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[4]

Wei-Chieh Chen, Bogdan Kazmierczak. Traveling waves in quadratic autocatalytic systems with complexing agent. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020364

[5]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[6]

Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020180

[7]

Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020357

[8]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400

[9]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[10]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[11]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[12]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[13]

Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126

[14]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[15]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[16]

Ágota P. Horváth. Discrete diffusion semigroups associated with Jacobi-Dunkl and exceptional Jacobi polynomials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021002

[17]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[18]

Bing Yu, Lei Zhang. Global optimization-based dimer method for finding saddle points. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 741-753. doi: 10.3934/dcdsb.2020139

[19]

Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020054

[20]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003

 Impact Factor: 0.263

Metrics

  • PDF downloads (8)
  • HTML views (15)
  • Cited by (0)

Other articles
by authors

[Back to Top]