September  2021, 29(4): 2619-2636. doi: 10.3934/era.2021004

On the universal $ \alpha $-central extensions of the semi-direct product of Hom-preLie algebras

1. 

School of Mathematics, Changchun Normal University, Changchun 130032, China

2. 

School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China

3. 

Department of Mathematics, Harbin University of Science and Technology, Harbin 150080, China

* Corresponding author: chenly640@nenu.edu.cn

Received  October 2020 Revised  November 2020 Published  September 2021 Early access  January 2021

Fund Project: Supported by the National Natural Science Foundation of China (Nos. 11901057, 11771069, 12071405 and 11801121), Natural Science Foundation of Changchun Normal University, Natural Science Foundation of Heilongjiang Province of China (QC2018006) and the Fundamental Research Foundation for Universities of Heilongjiang Province(No. LGYC2018JC002)

We study Hom-actions, semidirect product and describe the relation between semi-direct product extensions and split extensions of Hom-preLie algebras. We obtain the functorial properties of the universal $ \alpha $-central extensions of $ \alpha $-perfect Hom-preLie algebras. We give that a derivation or an automorphism can be lifted in an $ \alpha $-cover with certain constraints. We provide some necessary and sufficient conditions about the universal $ \alpha $-central extension of the semi-direct product of two $ \alpha $-perfect Hom-preLie algebras.

Citation: Bing Sun, Liangyun Chen, Yan Cao. On the universal $ \alpha $-central extensions of the semi-direct product of Hom-preLie algebras. Electronic Research Archive, 2021, 29 (4) : 2619-2636. doi: 10.3934/era.2021004
References:
[1]

J. M. Casas and N. Corral, On universal central extensions of Leibniz algebras, Comm. Algebra, 37 (2009), 2104-2120.  doi: 10.1080/00927870802506234.  Google Scholar

[2]

J. M. Casas and M. Ladra, Stem extensions and stem covers of Leibniz algebras, Georgian Math. J., 9 (2002), 659-669.   Google Scholar

[3]

J. M. Casas and M. Ladra, Computing low dimensional Leibniz homology of some perfect Leibniz algebras, Southeast Asian Bull. Math., 31 (2007), 683-690.   Google Scholar

[4]

J. M. Casas, M. A. Insua and N. P. Rego, On universal central extensions of Hom-Leibniz algebras, J. Algebra Appl., 13 (2014), 1450053, 22pp. doi: 10.1142/S0219498814500534.  Google Scholar

[5]

J. M. Casas and N. P. Rego, On the universal $\alpha$-central extension of the semi-direct product of Hom-Leibniz algebras, Bull. Malays. Math. Sci. Soc., 39 (2016), 1579-1602. doi: 10.1007/s40840-015-0254-6.  Google Scholar

[6]

J. M. Casas and A. M. Vieites, Central extensions of perfect of Leibniz algebras, Recent Advances in Lie Theory, 25 (2002), 189-196.   Google Scholar

[7]

X. García-MartínezE. Khmaladze and M. Ladra, Non-abelian tensor product and homology of Lie superalgebras, J. Algebra, 440 (2015), 464-488.  doi: 10.1016/j.jalgebra.2015.05.027.  Google Scholar

[8]

A. V. Gnedbaye, Third homology groups of universal central extensions of a Lie algebra, Afrika Mat., 10 (1999), 46-63.   Google Scholar

[9]

A. V. Gnedbaye, A non-abelian tensor product of Leibniz algebras, Ann. Inst. Fourier (Grenoble), 49 (1999), 1149-1177.  doi: 10.5802/aif.1712.  Google Scholar

[10]

R. Kurdiani and T. Pirashvili, A Leibniz algebra structure on the second tensor power, J. Lie Theory, 12 (2002), 583-596.   Google Scholar

[11]

A. Makhlouf and S. D. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl., 2 (2008), 51-64.   Google Scholar

[12]

Y. Sheng, Representations of hom-Lie algebras, Algebr. Represent. Theory, 15 (2012), 1081-1098.  doi: 10.1007/s10468-011-9280-8.  Google Scholar

[13]

B. Sun, L. Y. Chen and X. Zhou, On universal $\alpha$-central extensions of Hom-preLie algebras, arXiv: 1810.09848. Google Scholar

[14]

D. Yau, Hom-Novikov algebras, J. Phys. A, 44 (2011), 085202, 20 pp. doi: 10.1088/1751-8113/44/8/085202.  Google Scholar

show all references

References:
[1]

J. M. Casas and N. Corral, On universal central extensions of Leibniz algebras, Comm. Algebra, 37 (2009), 2104-2120.  doi: 10.1080/00927870802506234.  Google Scholar

[2]

J. M. Casas and M. Ladra, Stem extensions and stem covers of Leibniz algebras, Georgian Math. J., 9 (2002), 659-669.   Google Scholar

[3]

J. M. Casas and M. Ladra, Computing low dimensional Leibniz homology of some perfect Leibniz algebras, Southeast Asian Bull. Math., 31 (2007), 683-690.   Google Scholar

[4]

J. M. Casas, M. A. Insua and N. P. Rego, On universal central extensions of Hom-Leibniz algebras, J. Algebra Appl., 13 (2014), 1450053, 22pp. doi: 10.1142/S0219498814500534.  Google Scholar

[5]

J. M. Casas and N. P. Rego, On the universal $\alpha$-central extension of the semi-direct product of Hom-Leibniz algebras, Bull. Malays. Math. Sci. Soc., 39 (2016), 1579-1602. doi: 10.1007/s40840-015-0254-6.  Google Scholar

[6]

J. M. Casas and A. M. Vieites, Central extensions of perfect of Leibniz algebras, Recent Advances in Lie Theory, 25 (2002), 189-196.   Google Scholar

[7]

X. García-MartínezE. Khmaladze and M. Ladra, Non-abelian tensor product and homology of Lie superalgebras, J. Algebra, 440 (2015), 464-488.  doi: 10.1016/j.jalgebra.2015.05.027.  Google Scholar

[8]

A. V. Gnedbaye, Third homology groups of universal central extensions of a Lie algebra, Afrika Mat., 10 (1999), 46-63.   Google Scholar

[9]

A. V. Gnedbaye, A non-abelian tensor product of Leibniz algebras, Ann. Inst. Fourier (Grenoble), 49 (1999), 1149-1177.  doi: 10.5802/aif.1712.  Google Scholar

[10]

R. Kurdiani and T. Pirashvili, A Leibniz algebra structure on the second tensor power, J. Lie Theory, 12 (2002), 583-596.   Google Scholar

[11]

A. Makhlouf and S. D. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl., 2 (2008), 51-64.   Google Scholar

[12]

Y. Sheng, Representations of hom-Lie algebras, Algebr. Represent. Theory, 15 (2012), 1081-1098.  doi: 10.1007/s10468-011-9280-8.  Google Scholar

[13]

B. Sun, L. Y. Chen and X. Zhou, On universal $\alpha$-central extensions of Hom-preLie algebras, arXiv: 1810.09848. Google Scholar

[14]

D. Yau, Hom-Novikov algebras, J. Phys. A, 44 (2011), 085202, 20 pp. doi: 10.1088/1751-8113/44/8/085202.  Google Scholar

[1]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[2]

Luigi C. Berselli, Argus Adrian Dunca, Roger Lewandowski, Dinh Duong Nguyen. Modeling error of $ \alpha $-models of turbulence on a two-dimensional torus. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 4613-4643. doi: 10.3934/dcdsb.2020305

[3]

Yong Zhou, Jia Wei He. New results on controllability of fractional evolution systems with order $ \alpha\in (1,2) $. Evolution Equations & Control Theory, 2021, 10 (3) : 491-509. doi: 10.3934/eect.2020077

[4]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, 2021, 29 (3) : 2445-2456. doi: 10.3934/era.2020123

[5]

Jiao Song, Jiang-Lun Wu, Fangzhou Huang. First jump time in simulation of sampling trajectories of affine jump-diffusions driven by $ \alpha $-stable white noise. Communications on Pure & Applied Analysis, 2020, 19 (8) : 4127-4142. doi: 10.3934/cpaa.2020184

[6]

Pak Tung Ho. Prescribing $ Q $-curvature on $ S^n $ in the presence of symmetry. Communications on Pure & Applied Analysis, 2020, 19 (2) : 715-722. doi: 10.3934/cpaa.2020033

[7]

Vitali Milman, Liran Rotem. $\alpha$-concave functions and a functional extension of mixed volumes. Electronic Research Announcements, 2013, 20: 1-11. doi: 10.3934/era.2013.20.1

[8]

Alessandro Fonda, Antonio J. Ureña. Periodic, subharmonic, and quasi-periodic oscillations under the action of a central force. Discrete & Continuous Dynamical Systems, 2011, 29 (1) : 169-192. doi: 10.3934/dcds.2011.29.169

[9]

Jennifer D. Key, Bernardo G. Rodrigues. Binary codes from $ m $-ary $ n $-cubes $ Q^m_n $. Advances in Mathematics of Communications, 2021, 15 (3) : 507-524. doi: 10.3934/amc.2020079

[10]

Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020133

[11]

Umberto De Maio, Peter I. Kogut, Gabriella Zecca. On optimal $ L^1 $-control in coefficients for quasi-linear Dirichlet boundary value problems with $ BMO $-anisotropic $ p $-Laplacian. Mathematical Control & Related Fields, 2020, 10 (4) : 827-854. doi: 10.3934/mcrf.2020021

[12]

Rakesh Nandi, Sujit Kumar Samanta, Chesoong Kim. Analysis of $ D $-$ BMAP/G/1 $ queueing system under $ N $-policy and its cost optimization. Journal of Industrial & Management Optimization, 2021, 17 (6) : 3603-3631. doi: 10.3934/jimo.2020135

[13]

Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129

[14]

Eun-Kyung Cho, Cunsheng Ding, Jong Yoon Hyun. A spectral characterisation of $ t $-designs and its applications. Advances in Mathematics of Communications, 2019, 13 (3) : 477-503. doi: 10.3934/amc.2019030

[15]

Sugata Gangopadhyay, Goutam Paul, Nishant Sinha, Pantelimon Stǎnicǎ. Generalized nonlinearity of $ S$-boxes. Advances in Mathematics of Communications, 2018, 12 (1) : 115-122. doi: 10.3934/amc.2018007

[16]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[17]

Gang Wang, Yuan Zhang. $ Z $-eigenvalue exclusion theorems for tensors. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1987-1998. doi: 10.3934/jimo.2019039

[18]

Gyula Csató. On the isoperimetric problem with perimeter density $r^p$. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2729-2749. doi: 10.3934/cpaa.2018129

[19]

Genni Fragnelli, Jerome A. Goldstein, Rosa Maria Mininni, Silvia Romanelli. Operators of order 2$ n $ with interior degeneracy. Discrete & Continuous Dynamical Systems - S, 2020, 13 (12) : 3417-3426. doi: 10.3934/dcdss.2020128

[20]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

2020 Impact Factor: 1.833

Metrics

  • PDF downloads (155)
  • HTML views (381)
  • Cited by (0)

Other articles
by authors

[Back to Top]