doi: 10.3934/era.2021004

On the universal $ \alpha $-central extensions of the semi-direct product of Hom-preLie algebras

1. 

School of Mathematics, Changchun Normal University, Changchun 130032, China

2. 

School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China

3. 

Department of Mathematics, Harbin University of Science and Technology, Harbin 150080, China

* Corresponding author: chenly640@nenu.edu.cn

Received  October 2020 Revised  November 2020 Published  January 2021

Fund Project: Supported by the National Natural Science Foundation of China (Nos. 11901057, 11771069, 12071405 and 11801121), Natural Science Foundation of Changchun Normal University, Natural Science Foundation of Heilongjiang Province of China (QC2018006) and the Fundamental Research Foundation for Universities of Heilongjiang Province(No. LGYC2018JC002)

We study Hom-actions, semidirect product and describe the relation between semi-direct product extensions and split extensions of Hom-preLie algebras. We obtain the functorial properties of the universal $ \alpha $-central extensions of $ \alpha $-perfect Hom-preLie algebras. We give that a derivation or an automorphism can be lifted in an $ \alpha $-cover with certain constraints. We provide some necessary and sufficient conditions about the universal $ \alpha $-central extension of the semi-direct product of two $ \alpha $-perfect Hom-preLie algebras.

Citation: Bing Sun, Liangyun Chen, Yan Cao. On the universal $ \alpha $-central extensions of the semi-direct product of Hom-preLie algebras. Electronic Research Archive, doi: 10.3934/era.2021004
References:
[1]

J. M. Casas and N. Corral, On universal central extensions of Leibniz algebras, Comm. Algebra, 37 (2009), 2104-2120.  doi: 10.1080/00927870802506234.  Google Scholar

[2]

J. M. Casas and M. Ladra, Stem extensions and stem covers of Leibniz algebras, Georgian Math. J., 9 (2002), 659-669.   Google Scholar

[3]

J. M. Casas and M. Ladra, Computing low dimensional Leibniz homology of some perfect Leibniz algebras, Southeast Asian Bull. Math., 31 (2007), 683-690.   Google Scholar

[4]

J. M. Casas, M. A. Insua and N. P. Rego, On universal central extensions of Hom-Leibniz algebras, J. Algebra Appl., 13 (2014), 1450053, 22pp. doi: 10.1142/S0219498814500534.  Google Scholar

[5]

J. M. Casas and N. P. Rego, On the universal $\alpha$-central extension of the semi-direct product of Hom-Leibniz algebras, Bull. Malays. Math. Sci. Soc., 39 (2016), 1579-1602. doi: 10.1007/s40840-015-0254-6.  Google Scholar

[6]

J. M. Casas and A. M. Vieites, Central extensions of perfect of Leibniz algebras, Recent Advances in Lie Theory, 25 (2002), 189-196.   Google Scholar

[7]

X. García-MartínezE. Khmaladze and M. Ladra, Non-abelian tensor product and homology of Lie superalgebras, J. Algebra, 440 (2015), 464-488.  doi: 10.1016/j.jalgebra.2015.05.027.  Google Scholar

[8]

A. V. Gnedbaye, Third homology groups of universal central extensions of a Lie algebra, Afrika Mat., 10 (1999), 46-63.   Google Scholar

[9]

A. V. Gnedbaye, A non-abelian tensor product of Leibniz algebras, Ann. Inst. Fourier (Grenoble), 49 (1999), 1149-1177.  doi: 10.5802/aif.1712.  Google Scholar

[10]

R. Kurdiani and T. Pirashvili, A Leibniz algebra structure on the second tensor power, J. Lie Theory, 12 (2002), 583-596.   Google Scholar

[11]

A. Makhlouf and S. D. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl., 2 (2008), 51-64.   Google Scholar

[12]

Y. Sheng, Representations of hom-Lie algebras, Algebr. Represent. Theory, 15 (2012), 1081-1098.  doi: 10.1007/s10468-011-9280-8.  Google Scholar

[13]

B. Sun, L. Y. Chen and X. Zhou, On universal $\alpha$-central extensions of Hom-preLie algebras, arXiv: 1810.09848. Google Scholar

[14]

D. Yau, Hom-Novikov algebras, J. Phys. A, 44 (2011), 085202, 20 pp. doi: 10.1088/1751-8113/44/8/085202.  Google Scholar

show all references

References:
[1]

J. M. Casas and N. Corral, On universal central extensions of Leibniz algebras, Comm. Algebra, 37 (2009), 2104-2120.  doi: 10.1080/00927870802506234.  Google Scholar

[2]

J. M. Casas and M. Ladra, Stem extensions and stem covers of Leibniz algebras, Georgian Math. J., 9 (2002), 659-669.   Google Scholar

[3]

J. M. Casas and M. Ladra, Computing low dimensional Leibniz homology of some perfect Leibniz algebras, Southeast Asian Bull. Math., 31 (2007), 683-690.   Google Scholar

[4]

J. M. Casas, M. A. Insua and N. P. Rego, On universal central extensions of Hom-Leibniz algebras, J. Algebra Appl., 13 (2014), 1450053, 22pp. doi: 10.1142/S0219498814500534.  Google Scholar

[5]

J. M. Casas and N. P. Rego, On the universal $\alpha$-central extension of the semi-direct product of Hom-Leibniz algebras, Bull. Malays. Math. Sci. Soc., 39 (2016), 1579-1602. doi: 10.1007/s40840-015-0254-6.  Google Scholar

[6]

J. M. Casas and A. M. Vieites, Central extensions of perfect of Leibniz algebras, Recent Advances in Lie Theory, 25 (2002), 189-196.   Google Scholar

[7]

X. García-MartínezE. Khmaladze and M. Ladra, Non-abelian tensor product and homology of Lie superalgebras, J. Algebra, 440 (2015), 464-488.  doi: 10.1016/j.jalgebra.2015.05.027.  Google Scholar

[8]

A. V. Gnedbaye, Third homology groups of universal central extensions of a Lie algebra, Afrika Mat., 10 (1999), 46-63.   Google Scholar

[9]

A. V. Gnedbaye, A non-abelian tensor product of Leibniz algebras, Ann. Inst. Fourier (Grenoble), 49 (1999), 1149-1177.  doi: 10.5802/aif.1712.  Google Scholar

[10]

R. Kurdiani and T. Pirashvili, A Leibniz algebra structure on the second tensor power, J. Lie Theory, 12 (2002), 583-596.   Google Scholar

[11]

A. Makhlouf and S. D. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl., 2 (2008), 51-64.   Google Scholar

[12]

Y. Sheng, Representations of hom-Lie algebras, Algebr. Represent. Theory, 15 (2012), 1081-1098.  doi: 10.1007/s10468-011-9280-8.  Google Scholar

[13]

B. Sun, L. Y. Chen and X. Zhou, On universal $\alpha$-central extensions of Hom-preLie algebras, arXiv: 1810.09848. Google Scholar

[14]

D. Yau, Hom-Novikov algebras, J. Phys. A, 44 (2011), 085202, 20 pp. doi: 10.1088/1751-8113/44/8/085202.  Google Scholar

[1]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[2]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[3]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[4]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[5]

Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129

[6]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[7]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[8]

Guoyuan Chen, Yong Liu, Juncheng Wei. Nondegeneracy of harmonic maps from $ {{\mathbb{R}}^{2}} $ to $ {{\mathbb{S}}^{2}} $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3215-3233. doi: 10.3934/dcds.2019228

[9]

Magdalena Foryś-Krawiec, Jiří Kupka, Piotr Oprocha, Xueting Tian. On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1271-1296. doi: 10.3934/dcds.2020317

[10]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[11]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[12]

Yuan Cao, Yonglin Cao, Hai Q. Dinh, Ramakrishna Bandi, Fang-Wei Fu. An explicit representation and enumeration for negacyclic codes of length $ 2^kn $ over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021, 15 (2) : 291-309. doi: 10.3934/amc.2020067

[13]

Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020123

[14]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[15]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[16]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[17]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[18]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[19]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[20]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

 Impact Factor: 0.263

Article outline

[Back to Top]