
-
Previous Article
Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $
- ERA Home
- This Issue
-
Next Article
Finite/fixed-time synchronization for complex networks via quantized adaptive control
Tori can't collapse to an interval
018 McAllister Bldg, University Park, PA 16802-6402, USA |
Here we prove that under a lower sectional curvature bound, a sequence of Riemannian manifolds diffeomorphic to the standard $ m $-dimensional torus cannot converge in the Gromov–Hausdorff sense to a closed interval.
The proof is done by contradiction by analyzing suitable covers of a contradicting sequence, obtained from the Burago–Gromov–Perelman generalization of the Yamaguchi fibration theorem.
References:
[1] |
L. Auslander and M. Kuranishi,
On the holonomy group of locally Euclidean spaces, Ann. of Math., 65 (1957), 411-415.
doi: 10.2307/1970053. |
[2] |
R. L. Bishop and R. J. Crittenden, Geometry of manifolds, Academic Press, 1964.
![]() |
[3] |
D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geometry, Graduate Studies in Mathematics, 33. American Mathematical Society, Providence, RI, 2001.
doi: 10.1090/gsm/033. |
[4] |
Y. Burago, M. Gromov and G. A. D. Perel'man,
Alexandrov spaces with curvature bounded below, Russian Mathematical Surveys, 47 (1992), 1-58.
doi: 10.1070/RM1992v047n02ABEH000877. |
[5] |
J. W. S. Cassels, An Introduction to The Geometry Of Numbers, Springer Science & Business Media (2012). Google Scholar |
[6] |
L. S. Charlap, Bieberbach Groups and Flat Manifolds, Springer-Verlag, New York, 1986.
doi: 10.1007/978-1-4613-8687-2. |
[7] |
M. Gromov,
Filling Riemannian manifolds, J. Differential Geom., 18 (1983), 1-147.
doi: 10.4310/jdg/1214509283. |
[8] |
M. Gromov,
Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math., 53 (1981), 53-73.
doi: 10.1007/BF02698687. |
[9] |
M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces, Birkhäuser Boston, Inc., Boston, MA, 2007. |
[10] |
M. Gromov and H. B. Lawson Jr,
Spin and scalar curvature in the presence of a fundamental group Ⅰ, Ann. of Math., 111 (1980), 209-230.
doi: 10.2307/1971198. |
[11] |
V. Kapovitch, Perelman's stability theorem, Surveys in Differential Geometry, 11 (2006), 103–136. arXiv: math/0703002.
doi: 10.4310/SDG.2006.v11.n1.a5. |
[12] |
V. Kapovitch,
Restrictions on collapsing with a lower sectional curvature bound, Math. Z., 249 (2005), 519-539.
doi: 10.1007/s00209-004-0715-3. |
[13] |
V. Kapovitch, A. Petrunin and W. Tuschmann,
Almost nonnegative curvature, and the gradient flow on Alexandrov spaces, Ann. of Math., 171 (2010), 343-373.
doi: 10.4007/annals.2010.171.343. |
[14] |
M. G. Katz, Torus cannot collapse to a segment, J. Geom., 111 (2020), Paper No. 13, 8 pp.
doi: 10.1007/s00022-020-0525-8. |
[15] |
G. Ya. Perelman, Alexandrov spaces with curvature bounded from below Ⅱ, Leningrad Branch of Steklov Institute. St. Petesburg (1991) Google Scholar |
[16] |
T. Yamaguchi,
Collapsing and pinching under a lower curvature bound, Ann. of Math., 133 (1991), 317-357.
doi: 10.2307/2944340. |
show all references
References:
[1] |
L. Auslander and M. Kuranishi,
On the holonomy group of locally Euclidean spaces, Ann. of Math., 65 (1957), 411-415.
doi: 10.2307/1970053. |
[2] |
R. L. Bishop and R. J. Crittenden, Geometry of manifolds, Academic Press, 1964.
![]() |
[3] |
D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geometry, Graduate Studies in Mathematics, 33. American Mathematical Society, Providence, RI, 2001.
doi: 10.1090/gsm/033. |
[4] |
Y. Burago, M. Gromov and G. A. D. Perel'man,
Alexandrov spaces with curvature bounded below, Russian Mathematical Surveys, 47 (1992), 1-58.
doi: 10.1070/RM1992v047n02ABEH000877. |
[5] |
J. W. S. Cassels, An Introduction to The Geometry Of Numbers, Springer Science & Business Media (2012). Google Scholar |
[6] |
L. S. Charlap, Bieberbach Groups and Flat Manifolds, Springer-Verlag, New York, 1986.
doi: 10.1007/978-1-4613-8687-2. |
[7] |
M. Gromov,
Filling Riemannian manifolds, J. Differential Geom., 18 (1983), 1-147.
doi: 10.4310/jdg/1214509283. |
[8] |
M. Gromov,
Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math., 53 (1981), 53-73.
doi: 10.1007/BF02698687. |
[9] |
M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces, Birkhäuser Boston, Inc., Boston, MA, 2007. |
[10] |
M. Gromov and H. B. Lawson Jr,
Spin and scalar curvature in the presence of a fundamental group Ⅰ, Ann. of Math., 111 (1980), 209-230.
doi: 10.2307/1971198. |
[11] |
V. Kapovitch, Perelman's stability theorem, Surveys in Differential Geometry, 11 (2006), 103–136. arXiv: math/0703002.
doi: 10.4310/SDG.2006.v11.n1.a5. |
[12] |
V. Kapovitch,
Restrictions on collapsing with a lower sectional curvature bound, Math. Z., 249 (2005), 519-539.
doi: 10.1007/s00209-004-0715-3. |
[13] |
V. Kapovitch, A. Petrunin and W. Tuschmann,
Almost nonnegative curvature, and the gradient flow on Alexandrov spaces, Ann. of Math., 171 (2010), 343-373.
doi: 10.4007/annals.2010.171.343. |
[14] |
M. G. Katz, Torus cannot collapse to a segment, J. Geom., 111 (2020), Paper No. 13, 8 pp.
doi: 10.1007/s00022-020-0525-8. |
[15] |
G. Ya. Perelman, Alexandrov spaces with curvature bounded from below Ⅱ, Leningrad Branch of Steklov Institute. St. Petesburg (1991) Google Scholar |
[16] |
T. Yamaguchi,
Collapsing and pinching under a lower curvature bound, Ann. of Math., 133 (1991), 317-357.
doi: 10.2307/2944340. |



[1] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[2] |
Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045 |
[3] |
Huyuan Chen, Dong Ye, Feng Zhou. On gaussian curvature equation in $ \mathbb{R}^2 $ with prescribed nonpositive curvature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3201-3214. doi: 10.3934/dcds.2020125 |
[4] |
Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090 |
[5] |
Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280 |
[6] |
Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318 |
[7] |
Petr Pauš, Shigetoshi Yazaki. Segmentation of color images using mean curvature flow and parametric curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1123-1132. doi: 10.3934/dcdss.2020389 |
[8] |
Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248 |
[9] |
Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034 |
[10] |
Kohei Nakamura. An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1093-1102. doi: 10.3934/dcdss.2020385 |
[11] |
Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390 |
[12] |
Tomáš Bodnár, Philippe Fraunié, Petr Knobloch, Hynek Řezníček. Numerical evaluation of artificial boundary condition for wall-bounded stably stratified flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 785-801. doi: 10.3934/dcdss.2020333 |
Impact Factor: 0.263
Tools
Metrics
Other articles
by authors
[Back to Top]