• Previous Article
    $ C^* $-algebras associated with asymptotic equivalence relations defined by hyperbolic toral automorphisms
  • ERA Home
  • This Issue
  • Next Article
    On the universal $ \alpha $-central extensions of the semi-direct product of Hom-preLie algebras
September  2021, 29(4): 2637-2644. doi: 10.3934/era.2021005

Tori can't collapse to an interval

018 McAllister Bldg, University Park, PA 16802-6402, USA

* Corresponding author: Sergio Zamora

Received  October 2020 Published  September 2021 Early access  January 2021

Fund Project: The author would like to thank Raquel Perales and Anton Petrunin

Here we prove that under a lower sectional curvature bound, a sequence of Riemannian manifolds diffeomorphic to the standard $ m $-dimensional torus cannot converge in the Gromov–Hausdorff sense to a closed interval.

The proof is done by contradiction by analyzing suitable covers of a contradicting sequence, obtained from the Burago–Gromov–Perelman generalization of the Yamaguchi fibration theorem.

Citation: Sergio Zamora. Tori can't collapse to an interval. Electronic Research Archive, 2021, 29 (4) : 2637-2644. doi: 10.3934/era.2021005
References:
[1]

L. Auslander and M. Kuranishi, On the holonomy group of locally Euclidean spaces, Ann. of Math., 65 (1957), 411-415.  doi: 10.2307/1970053.  Google Scholar

[2] R. L. Bishop and R. J. Crittenden, Geometry of manifolds, Academic Press, 1964.   Google Scholar
[3]

D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geometry, Graduate Studies in Mathematics, 33. American Mathematical Society, Providence, RI, 2001. doi: 10.1090/gsm/033.  Google Scholar

[4]

Y. BuragoM. Gromov and G. A. D. Perel'man, Alexandrov spaces with curvature bounded below, Russian Mathematical Surveys, 47 (1992), 1-58.  doi: 10.1070/RM1992v047n02ABEH000877.  Google Scholar

[5]

J. W. S. Cassels, An Introduction to The Geometry Of Numbers, Springer Science & Business Media (2012). Google Scholar

[6]

L. S. Charlap, Bieberbach Groups and Flat Manifolds, Springer-Verlag, New York, 1986. doi: 10.1007/978-1-4613-8687-2.  Google Scholar

[7]

M. Gromov, Filling Riemannian manifolds, J. Differential Geom., 18 (1983), 1-147.  doi: 10.4310/jdg/1214509283.  Google Scholar

[8]

M. Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math., 53 (1981), 53-73.  doi: 10.1007/BF02698687.  Google Scholar

[9]

M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces, Birkhäuser Boston, Inc., Boston, MA, 2007.  Google Scholar

[10]

M. Gromov and H. B. Lawson Jr, Spin and scalar curvature in the presence of a fundamental group Ⅰ, Ann. of Math., 111 (1980), 209-230.  doi: 10.2307/1971198.  Google Scholar

[11]

V. Kapovitch, Perelman's stability theorem, Surveys in Differential Geometry, 11 (2006), 103–136. arXiv: math/0703002. doi: 10.4310/SDG.2006.v11.n1.a5.  Google Scholar

[12]

V. Kapovitch, Restrictions on collapsing with a lower sectional curvature bound, Math. Z., 249 (2005), 519-539.  doi: 10.1007/s00209-004-0715-3.  Google Scholar

[13]

V. KapovitchA. Petrunin and W. Tuschmann, Almost nonnegative curvature, and the gradient flow on Alexandrov spaces, Ann. of Math., 171 (2010), 343-373.  doi: 10.4007/annals.2010.171.343.  Google Scholar

[14]

M. G. Katz, Torus cannot collapse to a segment, J. Geom., 111 (2020), Paper No. 13, 8 pp. doi: 10.1007/s00022-020-0525-8.  Google Scholar

[15]

G. Ya. Perelman, Alexandrov spaces with curvature bounded from below Ⅱ, Leningrad Branch of Steklov Institute. St. Petesburg (1991) Google Scholar

[16]

T. Yamaguchi, Collapsing and pinching under a lower curvature bound, Ann. of Math., 133 (1991), 317-357.  doi: 10.2307/2944340.  Google Scholar

show all references

References:
[1]

L. Auslander and M. Kuranishi, On the holonomy group of locally Euclidean spaces, Ann. of Math., 65 (1957), 411-415.  doi: 10.2307/1970053.  Google Scholar

[2] R. L. Bishop and R. J. Crittenden, Geometry of manifolds, Academic Press, 1964.   Google Scholar
[3]

D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geometry, Graduate Studies in Mathematics, 33. American Mathematical Society, Providence, RI, 2001. doi: 10.1090/gsm/033.  Google Scholar

[4]

Y. BuragoM. Gromov and G. A. D. Perel'man, Alexandrov spaces with curvature bounded below, Russian Mathematical Surveys, 47 (1992), 1-58.  doi: 10.1070/RM1992v047n02ABEH000877.  Google Scholar

[5]

J. W. S. Cassels, An Introduction to The Geometry Of Numbers, Springer Science & Business Media (2012). Google Scholar

[6]

L. S. Charlap, Bieberbach Groups and Flat Manifolds, Springer-Verlag, New York, 1986. doi: 10.1007/978-1-4613-8687-2.  Google Scholar

[7]

M. Gromov, Filling Riemannian manifolds, J. Differential Geom., 18 (1983), 1-147.  doi: 10.4310/jdg/1214509283.  Google Scholar

[8]

M. Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math., 53 (1981), 53-73.  doi: 10.1007/BF02698687.  Google Scholar

[9]

M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces, Birkhäuser Boston, Inc., Boston, MA, 2007.  Google Scholar

[10]

M. Gromov and H. B. Lawson Jr, Spin and scalar curvature in the presence of a fundamental group Ⅰ, Ann. of Math., 111 (1980), 209-230.  doi: 10.2307/1971198.  Google Scholar

[11]

V. Kapovitch, Perelman's stability theorem, Surveys in Differential Geometry, 11 (2006), 103–136. arXiv: math/0703002. doi: 10.4310/SDG.2006.v11.n1.a5.  Google Scholar

[12]

V. Kapovitch, Restrictions on collapsing with a lower sectional curvature bound, Math. Z., 249 (2005), 519-539.  doi: 10.1007/s00209-004-0715-3.  Google Scholar

[13]

V. KapovitchA. Petrunin and W. Tuschmann, Almost nonnegative curvature, and the gradient flow on Alexandrov spaces, Ann. of Math., 171 (2010), 343-373.  doi: 10.4007/annals.2010.171.343.  Google Scholar

[14]

M. G. Katz, Torus cannot collapse to a segment, J. Geom., 111 (2020), Paper No. 13, 8 pp. doi: 10.1007/s00022-020-0525-8.  Google Scholar

[15]

G. Ya. Perelman, Alexandrov spaces with curvature bounded from below Ⅱ, Leningrad Branch of Steklov Institute. St. Petesburg (1991) Google Scholar

[16]

T. Yamaguchi, Collapsing and pinching under a lower curvature bound, Ann. of Math., 133 (1991), 317-357.  doi: 10.2307/2944340.  Google Scholar

Figure 1.  Flat Klein bottles can converge to an interval
Figure 2.  The Fibration Theorem gives us a decomposition $ X_n = S_1 \# S_2 $
Figure 3.  The configuration $ (q_n; \tilde{p}_n ,a_n, b_n) $ violates the Alexandrov condition
[1]

Nina Lebedeva, Anton Petrunin. Curvature bounded below: A definition a la Berg--Nikolaev. Electronic Research Announcements, 2010, 17: 122-124. doi: 10.3934/era.2010.17.122

[2]

Daniel T. Wise. Nonpositive immersions, sectional curvature, and subgroup properties. Electronic Research Announcements, 2003, 9: 1-9.

[3]

Anton Petrunin. Harmonic functions on Alexandrov spaces and their applications. Electronic Research Announcements, 2003, 9: 135-141.

[4]

Bernhard Ruf, P. N. Srikanth. Hopf fibration and singularly perturbed elliptic equations. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 823-838. doi: 10.3934/dcdss.2014.7.823

[5]

Wolf-Jürgen Beyn, Thorsten Hüls. Continuation and collapse of homoclinic tangles. Journal of Computational Dynamics, 2014, 1 (1) : 71-109. doi: 10.3934/jcd.2014.1.71

[6]

Ming Gao, Jonathan J. Wylie, Qiang Zhang. Inelastic Collapse in a Corner. Communications on Pure & Applied Analysis, 2009, 8 (1) : 275-293. doi: 10.3934/cpaa.2009.8.275

[7]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[8]

Nina Lebedeva. Number of extremal subsets in Alexandrov spaces and rigidity. Electronic Research Announcements, 2014, 21: 120-125. doi: 10.3934/era.2014.21.120

[9]

B. San Martín, Kendry J. Vivas. Asymptotically sectional-hyperbolic attractors. Discrete & Continuous Dynamical Systems, 2019, 39 (7) : 4057-4071. doi: 10.3934/dcds.2019163

[10]

Serafin Bautista, Carlos A. Morales. On the intersection of sectional-hyperbolic sets. Journal of Modern Dynamics, 2015, 9: 203-218. doi: 10.3934/jmd.2015.9.203

[11]

Christopher M. Kribs-Zaleta, Christopher Mitchell. Modeling colony collapse disorder in honeybees as a contagion. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1275-1294. doi: 10.3934/mbe.2014.11.1275

[12]

Carlos Arnoldo Morales. Strong stable manifolds for sectional-hyperbolic sets. Discrete & Continuous Dynamical Systems, 2007, 17 (3) : 553-560. doi: 10.3934/dcds.2007.17.553

[13]

A. M. López. Finiteness and existence of attractors and repellers on sectional hyperbolic sets. Discrete & Continuous Dynamical Systems, 2017, 37 (1) : 337-354. doi: 10.3934/dcds.2017014

[14]

Enoch Humberto Apaza Calla, Bulmer Mejia Garcia, Carlos Arnoldo Morales Rojas. Topological properties of sectional-Anosov flows. Discrete & Continuous Dynamical Systems, 2015, 35 (10) : 4735-4741. doi: 10.3934/dcds.2015.35.4735

[15]

Serafin Bautista, Yeison Sánchez. Sectional-hyperbolic Lyapunov stable sets. Discrete & Continuous Dynamical Systems, 2020, 40 (4) : 2011-2016. doi: 10.3934/dcds.2020103

[16]

Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045

[17]

Zhongyi Huang, Peter A. Markowich, Christof Sparber. Numerical simulation of trapped dipolar quantum gases: Collapse studies and vortex dynamics. Kinetic & Related Models, 2010, 3 (1) : 181-194. doi: 10.3934/krm.2010.3.181

[18]

Alex L Castro, Wyatt Howard, Corey Shanbrom. Bridges between subriemannian geometry and algebraic geometry: Now and then. Conference Publications, 2015, 2015 (special) : 239-247. doi: 10.3934/proc.2015.0239

[19]

Joachim Escher, Boris Kolev, Marcus Wunsch. The geometry of a vorticity model equation. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1407-1419. doi: 10.3934/cpaa.2012.11.1407

[20]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

2020 Impact Factor: 1.833

Article outline

Figures and Tables

[Back to Top]