• Previous Article
    Continuous data assimilation applied to a velocity-vorticity formulation of the 2D Navier-Stokes equations
  • ERA Home
  • This Issue
  • Next Article
    A conforming-nonconforming mixed immersed finite element method for unsteady Stokes equations with moving interfaces
doi: 10.3934/era.2021007

Telescoping method, summation formulas, and inversion pairs

School of Mathematics, Tianjin University, Tianjin 300350, China

* Corresponding author

Received  May 2020 Revised  November 2020 Published  January 2021

Based on Gosper's algorithm, we present an approach to the telescoping of general sequences. Along this approach, we propose a summation formula and a bibasic extension of Ma's inversion formula. From the formulas, we are able to derive several hypergeometric and elliptic hypergeometric identities.

Citation: Qing-Hu Hou, Yarong Wei. Telescoping method, summation formulas, and inversion pairs. Electronic Research Archive, doi: 10.3934/era.2021007
References:
[1]

A. Bauer and M. Petkovšek, Multibasic and mixed hypergeometric Gosper-type algorithms, J. Symbolic Comput., 28 (1999), 711-736.  doi: 10.1006/jsco.1999.0321.  Google Scholar

[2]

G. Bhatnagar and S. C. Milne, Generalized bibasic hypergeometric series and their $$ \rm U $(n)$ extensions, Adv. Math., 131 (1997), 188-252.  doi: 10.1006/aima.1997.1659.  Google Scholar

[3]

D. M. Bressoud, A matrix inverse, Proc. Amer. Math. Soc., 88 (1983), 446-448.  doi: 10.1090/S0002-9939-1983-0699411-9.  Google Scholar

[4]

F. Chyzak, An extension of Zeilberger's fast algorithm to general holonomic functions, Discrete Math., 217 (2000), 115-134.  doi: 10.1016/S0012-365X(99)00259-9.  Google Scholar

[5]

G. Gasper, Summation, transformation, and expansion formulas for bibasic series, Trans. Amer. Math. Soc., 312 (1989), 257-277.  doi: 10.1090/S0002-9947-1989-0953537-0.  Google Scholar

[6]

G. Gasper and M. Rahman, Basic Hypergeometric Series, Second Ed., Cambridge University Press, Cambridge, 2004. doi: 10.1017/CBO9780511526251.  Google Scholar

[7]

R. W. Gosper Jr., Decision procedure for indefinite hypergeometric summation, Proc. Natl. Acad. Sci. USA, 75 (1978), 40-42.  doi: 10.1073/pnas.75.1.40.  Google Scholar

[8]

M. Karr, Summation in finite terms, J. Assoc. Comput. Mach., 28 (1981), 305-350.  doi: 10.1145/322248.322255.  Google Scholar

[9]

C. Krattenthaler, A new matrix inverse, Proc. Amer. Math. Soc., 124 (1996), 47-59.  doi: 10.1090/S0002-9939-96-03042-0.  Google Scholar

[10]

X. Ma, The $(f, g)$-inversion formula and its applications: The $(f, g)$-summation formula, Adv. in Appl. Math., 38 (2007), 227-257.  doi: 10.1016/j.aam.2005.06.006.  Google Scholar

[11]

P. Paule and C. Schneider, Towards a symbolic summation theory for unspecified sequences, In: Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory, 351–390, Texts Monogr. Symbol. Comput., Springer, Cham, 2019.  Google Scholar

[12]

M. Petkovšek, H. S. Wilf and D. Zeilberger, $A = B$, A K Peters, Ltd., Wellesley, MA, 1996.  Google Scholar

[13]

C. Schneider, Symbolic Summation in Difference Fields, Ph. D. thesis, J. Kepler University, 2001. Google Scholar

[14]

S. O. Warnaar, Summation and transformation formulas for elliptic hypergeometric series, Constr. Approx., 18 (2002), 479-502.  doi: 10.1007/s00365-002-0501-6.  Google Scholar

[15]

D. Zeilberger, The method of creative telescoping, J. Symbolic Comput., 11 (1991), 195-204.  doi: 10.1016/S0747-7171(08)80044-2.  Google Scholar

show all references

References:
[1]

A. Bauer and M. Petkovšek, Multibasic and mixed hypergeometric Gosper-type algorithms, J. Symbolic Comput., 28 (1999), 711-736.  doi: 10.1006/jsco.1999.0321.  Google Scholar

[2]

G. Bhatnagar and S. C. Milne, Generalized bibasic hypergeometric series and their $$ \rm U $(n)$ extensions, Adv. Math., 131 (1997), 188-252.  doi: 10.1006/aima.1997.1659.  Google Scholar

[3]

D. M. Bressoud, A matrix inverse, Proc. Amer. Math. Soc., 88 (1983), 446-448.  doi: 10.1090/S0002-9939-1983-0699411-9.  Google Scholar

[4]

F. Chyzak, An extension of Zeilberger's fast algorithm to general holonomic functions, Discrete Math., 217 (2000), 115-134.  doi: 10.1016/S0012-365X(99)00259-9.  Google Scholar

[5]

G. Gasper, Summation, transformation, and expansion formulas for bibasic series, Trans. Amer. Math. Soc., 312 (1989), 257-277.  doi: 10.1090/S0002-9947-1989-0953537-0.  Google Scholar

[6]

G. Gasper and M. Rahman, Basic Hypergeometric Series, Second Ed., Cambridge University Press, Cambridge, 2004. doi: 10.1017/CBO9780511526251.  Google Scholar

[7]

R. W. Gosper Jr., Decision procedure for indefinite hypergeometric summation, Proc. Natl. Acad. Sci. USA, 75 (1978), 40-42.  doi: 10.1073/pnas.75.1.40.  Google Scholar

[8]

M. Karr, Summation in finite terms, J. Assoc. Comput. Mach., 28 (1981), 305-350.  doi: 10.1145/322248.322255.  Google Scholar

[9]

C. Krattenthaler, A new matrix inverse, Proc. Amer. Math. Soc., 124 (1996), 47-59.  doi: 10.1090/S0002-9939-96-03042-0.  Google Scholar

[10]

X. Ma, The $(f, g)$-inversion formula and its applications: The $(f, g)$-summation formula, Adv. in Appl. Math., 38 (2007), 227-257.  doi: 10.1016/j.aam.2005.06.006.  Google Scholar

[11]

P. Paule and C. Schneider, Towards a symbolic summation theory for unspecified sequences, In: Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory, 351–390, Texts Monogr. Symbol. Comput., Springer, Cham, 2019.  Google Scholar

[12]

M. Petkovšek, H. S. Wilf and D. Zeilberger, $A = B$, A K Peters, Ltd., Wellesley, MA, 1996.  Google Scholar

[13]

C. Schneider, Symbolic Summation in Difference Fields, Ph. D. thesis, J. Kepler University, 2001. Google Scholar

[14]

S. O. Warnaar, Summation and transformation formulas for elliptic hypergeometric series, Constr. Approx., 18 (2002), 479-502.  doi: 10.1007/s00365-002-0501-6.  Google Scholar

[15]

D. Zeilberger, The method of creative telescoping, J. Symbolic Comput., 11 (1991), 195-204.  doi: 10.1016/S0747-7171(08)80044-2.  Google Scholar

[1]

Mehar Chand, Jyotindra C. Prajapati, Ebenezer Bonyah, Jatinder Kumar Bansal. Fractional calculus and applications of family of extended generalized Gauss hypergeometric functions. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 539-560. doi: 10.3934/dcdss.2020030

[2]

Armengol Gasull, Francesc Mañosas. Subseries and signed series. Communications on Pure & Applied Analysis, 2019, 18 (1) : 479-492. doi: 10.3934/cpaa.2019024

[3]

Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107

[4]

Nicolas Fournier. A recursive algorithm and a series expansion related to the homogeneous Boltzmann equation for hard potentials with angular cutoff. Kinetic & Related Models, 2019, 12 (3) : 483-505. doi: 10.3934/krm.2019020

[5]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, Stock price fluctuation prediction method based on time series analysis. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 915-915. doi: 10.3934/dcdss.2019061

[6]

Ferenc A. Bartha, Hans Z. Munthe-Kaas. Computing of B-series by automatic differentiation. Discrete & Continuous Dynamical Systems, 2014, 34 (3) : 903-914. doi: 10.3934/dcds.2014.34.903

[7]

Nikita Kalinin, Mikhail Shkolnikov. Introduction to tropical series and wave dynamic on them. Discrete & Continuous Dynamical Systems, 2018, 38 (6) : 2827-2849. doi: 10.3934/dcds.2018120

[8]

Geir Bogfjellmo. Algebraic structure of aromatic B-series. Journal of Computational Dynamics, 2019, 6 (2) : 199-222. doi: 10.3934/jcd.2019010

[9]

Chuang Peng. Minimum degrees of polynomial models on time series. Conference Publications, 2005, 2005 (Special) : 720-729. doi: 10.3934/proc.2005.2005.720

[10]

Ruiqi Li, Yifan Chen, Xiang Zhao, Yanli Hu, Weidong Xiao. Time series based urban air quality predication. Big Data & Information Analytics, 2016, 1 (2&3) : 171-183. doi: 10.3934/bdia.2016003

[11]

Ricardo García López. A note on L-series and Hodge spectrum of polynomials. Electronic Research Announcements, 2009, 16: 56-62. doi: 10.3934/era.2009.16.56

[12]

G. Gentile, V. Mastropietro. Convergence of Lindstedt series for the non linear wave equation. Communications on Pure & Applied Analysis, 2004, 3 (3) : 509-514. doi: 10.3934/cpaa.2004.3.509

[13]

Y. T. Li, R. Wong. Integral and series representations of the dirac delta function. Communications on Pure & Applied Analysis, 2008, 7 (2) : 229-247. doi: 10.3934/cpaa.2008.7.229

[14]

Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511

[15]

Mario Pulvirenti, Sergio Simonella, Anton Trushechkin. Microscopic solutions of the Boltzmann-Enskog equation in the series representation. Kinetic & Related Models, 2018, 11 (4) : 911-931. doi: 10.3934/krm.2018036

[16]

Michele V. Bartuccelli, G. Gentile, Kyriakos V. Georgiou. Kam theory, Lindstedt series and the stability of the upside-down pendulum. Discrete & Continuous Dynamical Systems, 2003, 9 (2) : 413-426. doi: 10.3934/dcds.2003.9.413

[17]

Philippe Chartier, Ander Murua, Jesús María Sanz-Serna. A formal series approach to averaging: Exponentially small error estimates. Discrete & Continuous Dynamical Systems, 2012, 32 (9) : 3009-3027. doi: 10.3934/dcds.2012.32.3009

[18]

Oktay Veliev. Spectral expansion series with parenthesis for the nonself-adjoint periodic differential operators. Communications on Pure & Applied Analysis, 2019, 18 (1) : 397-424. doi: 10.3934/cpaa.2019020

[19]

David W. Pravica, Michael J. Spurr. Unique summing of formal power series solutions to advanced and delayed differential equations. Conference Publications, 2005, 2005 (Special) : 730-737. doi: 10.3934/proc.2005.2005.730

[20]

Djédjé Sylvain Zézé, Michel Potier-Ferry, Yannick Tampango. Multi-point Taylor series to solve differential equations. Discrete & Continuous Dynamical Systems - S, 2019, 12 (6) : 1791-1806. doi: 10.3934/dcdss.2019118

 Impact Factor: 0.263

Article outline

[Back to Top]