doi: 10.3934/era.2021013

Graded post-Lie algebra structures and homogeneous Rota-Baxter operators on the Schrödinger-Virasoro algebra

School of Mathematical Science, Heilongjiang University, Harbin 150080, China

* Corresponding author: Xiaomin Tang

Received  July 2020 Revised  November 2020 Published  February 2021

Fund Project: This work is supported in part by NNSFC (Grant No. 11771069), NSF of Heilongjiang Province (Grant No. LH2020A020) and the fund of Heilongjiang Provincial Laboratory of the Theory and Computation of Complex Systems

In this paper, we characterize the graded post-Lie algebra structures on the Schrödinger-Virasoro Lie algebra. Furthermore, as an application, we obtain the all homogeneous Rota-Baxter operator of weight $ 1 $ on the Schrödinger-Virasoro Lie algebra.

Citation: Pengliang Xu, Xiaomin Tang. Graded post-Lie algebra structures and homogeneous Rota-Baxter operators on the Schrödinger-Virasoro algebra. Electronic Research Archive, doi: 10.3934/era.2021013
References:
[1]

C. BaiL. Guo and X. Ni, Nonabelian generalized Lax pairs, the classical Yang-Baxter equation and PostLie algebras, Commun. Math. Phys., 297 (2010), 553-596.  doi: 10.1007/s00220-010-0998-7.  Google Scholar

[2]

G. Baxter, An analytic problem whose solution follows from a simple algebraic identity, Pacific J. Math., 10 (1960), 731-742.  doi: 10.2140/pjm.1960.10.731.  Google Scholar

[3]

D. Burde, Left-symmetric algebras, or pre-Lie algebras in geometry and physics, Cent. Eur. J. Math., 4 (2006), 323-357.  doi: 10.2478/s11533-006-0014-9.  Google Scholar

[4]

D. BurdeK. Dekimpe and K. Vercammen, Affine actions on Lie groups and post-Lie algebra structures, Linear Algebra Appl., 437 (2012), 1250-1263.  doi: 10.1016/j.laa.2012.04.007.  Google Scholar

[5]

D. Burde and W. A. Moens, Commutative post-Lie algebra structures on Lie algebras, J. Algebra, 467 (2016), 183-201.  doi: 10.1016/j.jalgebra.2016.07.030.  Google Scholar

[6]

X. GaoM. LiuC. Bai and N. Jing, Rota-Baxter operators on Witt and Virasoro algebras, J. Geom. Phys., 108 (2016), 1-20.  doi: 10.1016/j.geomphys.2016.06.007.  Google Scholar

[7] L. Guo, An Introduction to Rota-Baxter Algebra, Somerville: International Press, 2012.   Google Scholar
[8]

I. Z. Golubschik and V. V. Sokolov, Generalized operator Yang-Baxter equations, integrable ODES and nonassociative algebras, J. Nonlinear Math. Phys., 7 (2000), 184-197.  doi: 10.2991/jnmp.2000.7.2.5.  Google Scholar

[9]

J. Han, J. Li and Y. Su, Lie bialgebra structures on the Schrödinger-Virasoro Lie algebras, J. Math. Phys., 50 (2009), 083504, 12 pp.  Google Scholar

[10]

M. Henkel, Schrödinger invariance and stringly anisotropic critical systems, J. Stat. Phys., 75 (1994), 1023-1061.  doi: 10.1007/BF02186756.  Google Scholar

[11]

Y. Li and X. Tang, Biderivations and commutative post-Lie algebra structure on Schrödinger-Virasoro Lie algebras, Bull. Iranian Math. Soc., 45 (2019), 1743-1754.  doi: 10.1007/s41980-019-00226-2.  Google Scholar

[12]

H. Z. Munthe-Kaas and A. Lundervold, On post-Lie algebras, Lie-Butcher series and moving frames, Found. Comput. Math., 13 (2013), 583-613.  doi: 10.1007/s10208-013-9167-7.  Google Scholar

[13]

Y. PanQ. LiuC. Bai and L. Guo, Post-Lie algebra structures on the Lie algebra SL (2, $\mathbb{C} $), Electron. J. Linear Algebra, 23 (2012), 180-197.  doi: 10.13001/1081-3810.1514.  Google Scholar

[14]

Y. Pei and C. Bai, Novikov algebras and Schrödinger-Virasoro Lie algebras, J. Phys., 44 (2011), 045201, 18 pp. doi: 10.1088/1751-8113/44/4/045201.  Google Scholar

[15]

C. Roger and J. Unterberger, The Schrödinger-Virasoro Lie group and algebra: Representation theory and cohomological study, Ann. Henri Poincaré, 7 (2006), 1477-1529.  doi: 10.1007/s00023-006-0289-1.  Google Scholar

[16]

G.-C. Rota, Baxter algebras and combinatorial identities I, Bull. Amer. Math. Soc., 75 (1969), 325–329. doi: 10.1090/S0002-9904-1969-12158-0.  Google Scholar

[17]

G.-C. Rota, Baxter operators, an introduction, in "Gian-Carlo Rota on combinatorics, introductory papers and commentaries", Joesph PS Kung, Editor, J., (1995), 504–512.  Google Scholar

[18]

X. Tang, Post-Lie algebra structures on the Witt algebra, Bull. Malays. Math. Sci. Soc., 42 (2019), 3427-3451.  doi: 10.1007/s40840-019-00730-y.  Google Scholar

[19]

X. TangY. Zhang and Q. Sun, Rota-Baxter operators on $4$-dimensional complex simple associative algebras, Appl. Math. Comput., 229 (2014), 173-186.  doi: 10.1016/j.amc.2013.12.032.  Google Scholar

[20]

X. Tang and Y. Zhong, Graded post-Lie algebra structures, Rota-Baxter operators and Yang-Baxter equations on the W-algebra $W(2, 2)$, Bull. Korean Math. Soc., 55 (2018), 1727-1748.  doi: 10.4134/BKMS.b171021.  Google Scholar

[21]

J. Unterberger, On vertex algrbra representations of the Schrödinger-Virasoro Lie algebra, Nuclear Phys. B, 823 (2009), 320-371.  doi: 10.1016/j.nuclphysb.2009.06.018.  Google Scholar

[22]

B. Vallette, Homology of generalized partition posets, J. Pure. Appl. Algebra, 208 (2007), 699-725.  doi: 10.1016/j.jpaa.2006.03.012.  Google Scholar

[23]

H. YuL. Guo and J.-Y. Thibon, Weak quasi-symmetric functions, Rota-Baxter algebras and Hopf algebras, Adv. Math., 344 (2019), 1-34.  doi: 10.1016/j.aim.2018.12.001.  Google Scholar

show all references

References:
[1]

C. BaiL. Guo and X. Ni, Nonabelian generalized Lax pairs, the classical Yang-Baxter equation and PostLie algebras, Commun. Math. Phys., 297 (2010), 553-596.  doi: 10.1007/s00220-010-0998-7.  Google Scholar

[2]

G. Baxter, An analytic problem whose solution follows from a simple algebraic identity, Pacific J. Math., 10 (1960), 731-742.  doi: 10.2140/pjm.1960.10.731.  Google Scholar

[3]

D. Burde, Left-symmetric algebras, or pre-Lie algebras in geometry and physics, Cent. Eur. J. Math., 4 (2006), 323-357.  doi: 10.2478/s11533-006-0014-9.  Google Scholar

[4]

D. BurdeK. Dekimpe and K. Vercammen, Affine actions on Lie groups and post-Lie algebra structures, Linear Algebra Appl., 437 (2012), 1250-1263.  doi: 10.1016/j.laa.2012.04.007.  Google Scholar

[5]

D. Burde and W. A. Moens, Commutative post-Lie algebra structures on Lie algebras, J. Algebra, 467 (2016), 183-201.  doi: 10.1016/j.jalgebra.2016.07.030.  Google Scholar

[6]

X. GaoM. LiuC. Bai and N. Jing, Rota-Baxter operators on Witt and Virasoro algebras, J. Geom. Phys., 108 (2016), 1-20.  doi: 10.1016/j.geomphys.2016.06.007.  Google Scholar

[7] L. Guo, An Introduction to Rota-Baxter Algebra, Somerville: International Press, 2012.   Google Scholar
[8]

I. Z. Golubschik and V. V. Sokolov, Generalized operator Yang-Baxter equations, integrable ODES and nonassociative algebras, J. Nonlinear Math. Phys., 7 (2000), 184-197.  doi: 10.2991/jnmp.2000.7.2.5.  Google Scholar

[9]

J. Han, J. Li and Y. Su, Lie bialgebra structures on the Schrödinger-Virasoro Lie algebras, J. Math. Phys., 50 (2009), 083504, 12 pp.  Google Scholar

[10]

M. Henkel, Schrödinger invariance and stringly anisotropic critical systems, J. Stat. Phys., 75 (1994), 1023-1061.  doi: 10.1007/BF02186756.  Google Scholar

[11]

Y. Li and X. Tang, Biderivations and commutative post-Lie algebra structure on Schrödinger-Virasoro Lie algebras, Bull. Iranian Math. Soc., 45 (2019), 1743-1754.  doi: 10.1007/s41980-019-00226-2.  Google Scholar

[12]

H. Z. Munthe-Kaas and A. Lundervold, On post-Lie algebras, Lie-Butcher series and moving frames, Found. Comput. Math., 13 (2013), 583-613.  doi: 10.1007/s10208-013-9167-7.  Google Scholar

[13]

Y. PanQ. LiuC. Bai and L. Guo, Post-Lie algebra structures on the Lie algebra SL (2, $\mathbb{C} $), Electron. J. Linear Algebra, 23 (2012), 180-197.  doi: 10.13001/1081-3810.1514.  Google Scholar

[14]

Y. Pei and C. Bai, Novikov algebras and Schrödinger-Virasoro Lie algebras, J. Phys., 44 (2011), 045201, 18 pp. doi: 10.1088/1751-8113/44/4/045201.  Google Scholar

[15]

C. Roger and J. Unterberger, The Schrödinger-Virasoro Lie group and algebra: Representation theory and cohomological study, Ann. Henri Poincaré, 7 (2006), 1477-1529.  doi: 10.1007/s00023-006-0289-1.  Google Scholar

[16]

G.-C. Rota, Baxter algebras and combinatorial identities I, Bull. Amer. Math. Soc., 75 (1969), 325–329. doi: 10.1090/S0002-9904-1969-12158-0.  Google Scholar

[17]

G.-C. Rota, Baxter operators, an introduction, in "Gian-Carlo Rota on combinatorics, introductory papers and commentaries", Joesph PS Kung, Editor, J., (1995), 504–512.  Google Scholar

[18]

X. Tang, Post-Lie algebra structures on the Witt algebra, Bull. Malays. Math. Sci. Soc., 42 (2019), 3427-3451.  doi: 10.1007/s40840-019-00730-y.  Google Scholar

[19]

X. TangY. Zhang and Q. Sun, Rota-Baxter operators on $4$-dimensional complex simple associative algebras, Appl. Math. Comput., 229 (2014), 173-186.  doi: 10.1016/j.amc.2013.12.032.  Google Scholar

[20]

X. Tang and Y. Zhong, Graded post-Lie algebra structures, Rota-Baxter operators and Yang-Baxter equations on the W-algebra $W(2, 2)$, Bull. Korean Math. Soc., 55 (2018), 1727-1748.  doi: 10.4134/BKMS.b171021.  Google Scholar

[21]

J. Unterberger, On vertex algrbra representations of the Schrödinger-Virasoro Lie algebra, Nuclear Phys. B, 823 (2009), 320-371.  doi: 10.1016/j.nuclphysb.2009.06.018.  Google Scholar

[22]

B. Vallette, Homology of generalized partition posets, J. Pure. Appl. Algebra, 208 (2007), 699-725.  doi: 10.1016/j.jpaa.2006.03.012.  Google Scholar

[23]

H. YuL. Guo and J.-Y. Thibon, Weak quasi-symmetric functions, Rota-Baxter algebras and Hopf algebras, Adv. Math., 344 (2019), 1-34.  doi: 10.1016/j.aim.2018.12.001.  Google Scholar

Table 2.  Values of $f,g,h$ satisfying (16)-(22), where $a,\mu\in\mathbb{C}$, $k\in \{-2,-1,1,2,3\}$, $t\in \mathbb{Z}\setminus\{0,1\}$ and $s\in \{2t-2,2t-1,2t,2t+1,2t+2\}$
$Cases$ $f(n)$ from Table 1 $a$, $\mu$ $h(n),g(n)$
$\mathcal{W}_{1}^{\mathcal{P}_{1}}$ $\mathcal{P}_{1}$ $a=\mu=0$ $ h{(\mathbb{Z})}=g{(\mathbb{Z})}=0 $
$\mathcal{W}_{2}^{\mathcal{P}_{1}}$ $\mathcal{P}_{1}$ $a=\mu=0$ $ h{(\mathbb{Z})}=g{(\mathbb{Z})}=-1 $
$\mathcal{W}_{1}^{\mathcal{P}_{2}}$ $\mathcal{P}_{2}$ $a=\mu=0$ $ h{(\mathbb{Z})}=g{(\mathbb{Z})}=0 $
$\mathcal{W}_{2}^{\mathcal{P}_{2}}$ $\mathcal{P}_{2}$ $a=\mu=0$ $ h{(\mathbb{Z})}=g{(\mathbb{Z})}=-1 $
$\mathcal{W}_{1,\mu}^{\mathcal{P}_{3}^c}$ $\mathcal{P}^{c}_{3}$ $a=0$ and $\forall \mu$ $ h{(\mathbb{Z})}=g{(\mathbb{Z})}=0 $
$\mathcal{W}_{2,\mu}^{\mathcal{P}_{3}^c}$ $\mathcal{P}^{c}_{3}$ $a=0$ and $\forall \mu$ $ h{(\mathbb{Z})}=g{(\mathbb{Z})}=-1 $
$\mathcal{W}_{3,\mu}^{\mathcal{P}^{c}_{3},k}$ $\mathcal{P}^{c}_{3}$ $a=0$ and $\forall \mu$ $h{(\mathbb{Z}_{> 0})}=-1$, $h{(\mathbb{Z}_{< 0})}=0$ and
$ g{(\mathbb{Z}^*_{\geqslant k})}=-1$, $g{(\mathbb{Z}^*_{\leqslant k-1})}=0$
$\mathcal{W}_{4,a,\mu}^{\mathcal{P}_{3}^c,k=1}$ $\mathcal{P}^{c}_{3}$ $\forall a$ and $\forall \mu$ $ h{(\mathbb{Z}_{> 0})}=-1$, $h{(\mathbb{Z}_{< 0})}=0$ and
$g{(\mathbb{Z}_{> 0})}=-1$, $g{(\mathbb{Z}_{< 0})}=0$
$\mathcal{W}_{5,\mu}^{\mathcal{P}_{3}^c,s,t}$ $\mathcal{P}^{c}_{3}$ $a=0$ and $\forall \mu$ $h{(\mathbb{Z}_{\geqslant t})}=-1$, $h{(\mathbb{Z}_{\leqslant t-1})}=0$ and
$ g{(\mathbb{Z}_{\geqslant s})}=-1$, $g{(\mathbb{Z}_{\leqslant s-1})}=0$
$\mathcal{W}_{1,\mu}^{\mathcal{P}_{4}^c}$ $\mathcal{P}^{c}_{4}$ $a=0$ and $\forall \mu$ $ h{(\mathbb{Z})}=g{(\mathbb{Z})}=0 $
$\mathcal{W}_{2,\mu}^{\mathcal{P}_{4}^c}$ $\mathcal{P}^{c}_{4}$ $a=0$ and $\forall \mu$ $ h{(\mathbb{Z})}=g{(\mathbb{Z})}=-1 $
$\mathcal{W}_{3,\mu}^{\mathcal{P}^{c}_{4},k}$ $\mathcal{P}^{c}_{4}$ $a=0$ and $\forall \mu$ $h{(\mathbb{Z}_{> 0})}=0$, $h{(\mathbb{Z}_{< 0})}=-1$ and
$ g{(\mathbb{Z}^*_{\geqslant k})}=0$, $g{(\mathbb{Z}^*_{\leqslant k-1})}=-1$
$\mathcal{W}_{4,a,\mu}^{\mathcal{P}^{c}_{4},k=1}$ $\mathcal{P}^{c}_{4}$ $\forall a$ and $\forall \mu$ $ h{(\mathbb{Z}_{> 0})}=0$, $h{(\mathbb{Z}_{< 0})}=-1$ and
$g{(\mathbb{Z}_{> 0})}=0$, $g{(\mathbb{Z}_{< 0})}=-1$
$\mathcal{W}_{5,\mu}^{\mathcal{P}_{4}^{c},s,t}$ $\mathcal{P}^{c}_{4}$ $a=0$ and $\forall \mu$ $h{(\mathbb{Z}_{\geqslant t})}=0$, $h{(\mathbb{Z}_{\leqslant t-1})}=-1$ and
$ g{(\mathbb{Z}_{\geqslant s})}=0$, $g{(\mathbb{Z}_{\leqslant s-1})}=-1$
$\mathcal{W}_{1}^{\mathcal{P}_{5}}$ $\mathcal{P}_{5}$ $a=\mu=0$ $ h{(\mathbb{Z})}=g{(\mathbb{Z})}=0 $
$\mathcal{W}_{2}^{\mathcal{P}_{5}}$ $\mathcal{P}_{5}$ $a=\mu=0$ $ h{(\mathbb{Z})}=g{(\mathbb{Z})}=-1 $
$\mathcal{W}_{3}^{\mathcal{P}_{5}}$ $\mathcal{P}_{5}$ $a=\mu=0$ $h{(\mathbb{Z}_{\leqslant 0})}=0$, $h{(\mathbb{Z}_{\geqslant 1})}=-1$ and
$ g{(\mathbb{Z}_{\leqslant -1})}=0$, $g{(\mathbb{Z}_{\geqslant 1})}=-1 $
$\mathcal{W}_{1}^{\mathcal{P}_{6}}$ $\mathcal{P}_{6}$ $a=\mu=0$ $ h{(\mathbb{Z})}=g{(\mathbb{Z})}=0 $
$\mathcal{W}_{2}^{\mathcal{P}_{6}}$ $\mathcal{P}_{6}$ $a=\mu=0$ $ h{(\mathbb{Z})}=g{(\mathbb{Z})}=-1 $
$\mathcal{W}_{3}^{\mathcal{P}_{6}}$ $\mathcal{P}_{6}$ $a=\mu=0$ $h{(\mathbb{Z}_{\leqslant 0})}=-1$, $h{(\mathbb{Z}_{\geqslant 1})}=0$ and
$ g{(\mathbb{Z}_{\leqslant -1})}=-1$, $g{(\mathbb{Z}_{\geqslant 1})}=0 $
$\mathcal{W}_{1}^{\mathcal{P}_{7}}$ $\mathcal{P}_{7}$ $a=\mu=0$ $ h{(\mathbb{Z})}=g{(\mathbb{Z})}=0 $
$\mathcal{W}_{2}^{\mathcal{P}_{7}}$ $\mathcal{P}_{7}$ $a=\mu=0$ $ h{(\mathbb{Z})}=g{(\mathbb{Z})}=-1 $
$\mathcal{W}_{3}^{\mathcal{P}_{7}}$ $\mathcal{P}_{7}$ $a=\mu=0$ $h{(\mathbb{Z}_{\leqslant 0})}=-1$, $h{(\mathbb{Z}_{\geqslant 1})}=0$ and
$ g{(\mathbb{Z}_{\leqslant -1})}=-1$, $g{(\mathbb{Z}_{\geqslant 1})}=0 $
$\mathcal{W}_{1}^{\mathcal{P}_{8}}$ $\mathcal{P}_{8}$ $a=\mu=0$ $ h{(\mathbb{Z})}=g{(\mathbb{Z})}=0 $
$\mathcal{W}_{2}^{\mathcal{P}_{8}}$ $\mathcal{P}_{8}$ $a=\mu=0$ $ h{(\mathbb{Z})}=g{(\mathbb{Z})}=-1 $
$\mathcal{W}_{3}^{\mathcal{P}_{8}}$ $\mathcal{P}_{8}$ $a=\mu=0$ $h{(\mathbb{Z}_{\leqslant 0})}=0$, $h{(\mathbb{Z}_{\geqslant 1})}=-1$ and
$ g{(\mathbb{Z}_{\leqslant -1})}=0$, $g{(\mathbb{Z}_{\geqslant 1})}=-1 $
$Cases$ $f(n)$ from Table 1 $a$, $\mu$ $h(n),g(n)$
$\mathcal{W}_{1}^{\mathcal{P}_{1}}$ $\mathcal{P}_{1}$ $a=\mu=0$ $ h{(\mathbb{Z})}=g{(\mathbb{Z})}=0 $
$\mathcal{W}_{2}^{\mathcal{P}_{1}}$ $\mathcal{P}_{1}$ $a=\mu=0$ $ h{(\mathbb{Z})}=g{(\mathbb{Z})}=-1 $
$\mathcal{W}_{1}^{\mathcal{P}_{2}}$ $\mathcal{P}_{2}$ $a=\mu=0$ $ h{(\mathbb{Z})}=g{(\mathbb{Z})}=0 $
$\mathcal{W}_{2}^{\mathcal{P}_{2}}$ $\mathcal{P}_{2}$ $a=\mu=0$ $ h{(\mathbb{Z})}=g{(\mathbb{Z})}=-1 $
$\mathcal{W}_{1,\mu}^{\mathcal{P}_{3}^c}$ $\mathcal{P}^{c}_{3}$ $a=0$ and $\forall \mu$ $ h{(\mathbb{Z})}=g{(\mathbb{Z})}=0 $
$\mathcal{W}_{2,\mu}^{\mathcal{P}_{3}^c}$ $\mathcal{P}^{c}_{3}$ $a=0$ and $\forall \mu$ $ h{(\mathbb{Z})}=g{(\mathbb{Z})}=-1 $
$\mathcal{W}_{3,\mu}^{\mathcal{P}^{c}_{3},k}$ $\mathcal{P}^{c}_{3}$ $a=0$ and $\forall \mu$ $h{(\mathbb{Z}_{> 0})}=-1$, $h{(\mathbb{Z}_{< 0})}=0$ and
$ g{(\mathbb{Z}^*_{\geqslant k})}=-1$, $g{(\mathbb{Z}^*_{\leqslant k-1})}=0$
$\mathcal{W}_{4,a,\mu}^{\mathcal{P}_{3}^c,k=1}$ $\mathcal{P}^{c}_{3}$ $\forall a$ and $\forall \mu$ $ h{(\mathbb{Z}_{> 0})}=-1$, $h{(\mathbb{Z}_{< 0})}=0$ and
$g{(\mathbb{Z}_{> 0})}=-1$, $g{(\mathbb{Z}_{< 0})}=0$
$\mathcal{W}_{5,\mu}^{\mathcal{P}_{3}^c,s,t}$ $\mathcal{P}^{c}_{3}$ $a=0$ and $\forall \mu$ $h{(\mathbb{Z}_{\geqslant t})}=-1$, $h{(\mathbb{Z}_{\leqslant t-1})}=0$ and
$ g{(\mathbb{Z}_{\geqslant s})}=-1$, $g{(\mathbb{Z}_{\leqslant s-1})}=0$
$\mathcal{W}_{1,\mu}^{\mathcal{P}_{4}^c}$ $\mathcal{P}^{c}_{4}$ $a=0$ and $\forall \mu$ $ h{(\mathbb{Z})}=g{(\mathbb{Z})}=0 $
$\mathcal{W}_{2,\mu}^{\mathcal{P}_{4}^c}$ $\mathcal{P}^{c}_{4}$ $a=0$ and $\forall \mu$ $ h{(\mathbb{Z})}=g{(\mathbb{Z})}=-1 $
$\mathcal{W}_{3,\mu}^{\mathcal{P}^{c}_{4},k}$ $\mathcal{P}^{c}_{4}$ $a=0$ and $\forall \mu$ $h{(\mathbb{Z}_{> 0})}=0$, $h{(\mathbb{Z}_{< 0})}=-1$ and
$ g{(\mathbb{Z}^*_{\geqslant k})}=0$, $g{(\mathbb{Z}^*_{\leqslant k-1})}=-1$
$\mathcal{W}_{4,a,\mu}^{\mathcal{P}^{c}_{4},k=1}$ $\mathcal{P}^{c}_{4}$ $\forall a$ and $\forall \mu$ $ h{(\mathbb{Z}_{> 0})}=0$, $h{(\mathbb{Z}_{< 0})}=-1$ and
$g{(\mathbb{Z}_{> 0})}=0$, $g{(\mathbb{Z}_{< 0})}=-1$
$\mathcal{W}_{5,\mu}^{\mathcal{P}_{4}^{c},s,t}$ $\mathcal{P}^{c}_{4}$ $a=0$ and $\forall \mu$ $h{(\mathbb{Z}_{\geqslant t})}=0$, $h{(\mathbb{Z}_{\leqslant t-1})}=-1$ and
$ g{(\mathbb{Z}_{\geqslant s})}=0$, $g{(\mathbb{Z}_{\leqslant s-1})}=-1$
$\mathcal{W}_{1}^{\mathcal{P}_{5}}$ $\mathcal{P}_{5}$ $a=\mu=0$ $ h{(\mathbb{Z})}=g{(\mathbb{Z})}=0 $
$\mathcal{W}_{2}^{\mathcal{P}_{5}}$ $\mathcal{P}_{5}$ $a=\mu=0$ $ h{(\mathbb{Z})}=g{(\mathbb{Z})}=-1 $
$\mathcal{W}_{3}^{\mathcal{P}_{5}}$ $\mathcal{P}_{5}$ $a=\mu=0$ $h{(\mathbb{Z}_{\leqslant 0})}=0$, $h{(\mathbb{Z}_{\geqslant 1})}=-1$ and
$ g{(\mathbb{Z}_{\leqslant -1})}=0$, $g{(\mathbb{Z}_{\geqslant 1})}=-1 $
$\mathcal{W}_{1}^{\mathcal{P}_{6}}$ $\mathcal{P}_{6}$ $a=\mu=0$ $ h{(\mathbb{Z})}=g{(\mathbb{Z})}=0 $
$\mathcal{W}_{2}^{\mathcal{P}_{6}}$ $\mathcal{P}_{6}$ $a=\mu=0$ $ h{(\mathbb{Z})}=g{(\mathbb{Z})}=-1 $
$\mathcal{W}_{3}^{\mathcal{P}_{6}}$ $\mathcal{P}_{6}$ $a=\mu=0$ $h{(\mathbb{Z}_{\leqslant 0})}=-1$, $h{(\mathbb{Z}_{\geqslant 1})}=0$ and
$ g{(\mathbb{Z}_{\leqslant -1})}=-1$, $g{(\mathbb{Z}_{\geqslant 1})}=0 $
$\mathcal{W}_{1}^{\mathcal{P}_{7}}$ $\mathcal{P}_{7}$ $a=\mu=0$ $ h{(\mathbb{Z})}=g{(\mathbb{Z})}=0 $
$\mathcal{W}_{2}^{\mathcal{P}_{7}}$ $\mathcal{P}_{7}$ $a=\mu=0$ $ h{(\mathbb{Z})}=g{(\mathbb{Z})}=-1 $
$\mathcal{W}_{3}^{\mathcal{P}_{7}}$ $\mathcal{P}_{7}$ $a=\mu=0$ $h{(\mathbb{Z}_{\leqslant 0})}=-1$, $h{(\mathbb{Z}_{\geqslant 1})}=0$ and
$ g{(\mathbb{Z}_{\leqslant -1})}=-1$, $g{(\mathbb{Z}_{\geqslant 1})}=0 $
$\mathcal{W}_{1}^{\mathcal{P}_{8}}$ $\mathcal{P}_{8}$ $a=\mu=0$ $ h{(\mathbb{Z})}=g{(\mathbb{Z})}=0 $
$\mathcal{W}_{2}^{\mathcal{P}_{8}}$ $\mathcal{P}_{8}$ $a=\mu=0$ $ h{(\mathbb{Z})}=g{(\mathbb{Z})}=-1 $
$\mathcal{W}_{3}^{\mathcal{P}_{8}}$ $\mathcal{P}_{8}$ $a=\mu=0$ $h{(\mathbb{Z}_{\leqslant 0})}=0$, $h{(\mathbb{Z}_{\geqslant 1})}=-1$ and
$ g{(\mathbb{Z}_{\leqslant -1})}=0$, $g{(\mathbb{Z}_{\geqslant 1})}=-1 $
Table 1.  Values of f satisfying (16), where c$\mathbb{C}$
$Cases$ $f(n) $
$\mathcal{P}_{1} $ $f{(\mathbb{Z})}=0 $
$\mathcal{P}_{2} $ $f{(\mathbb{Z})}=-1 $
$\mathcal{P}^{c}_{3} $ $f{(\mathbb{Z}_{>0})}=-1,f{(\mathbb{Z}_{<0})}=0 \,$and$\, f{(0)}=c $
$\mathcal{P}^{c}_{4} $ $f{(\mathbb{Z}_{>0})}=0,f{(\mathbb{Z}_{<0})}=-1 \,$and$\, f{(0)}=c $
$\mathcal{P}_{5} $ $f{(\mathbb{Z}_{\geqslant2})}=-1 \,$and$\, f{(\mathbb{Z}_{\leqslant1})}=0 $
$\mathcal{P}_{6} $ $f{(\mathbb{Z}_{\geqslant2})}=0 \,$and$\, f{(\mathbb{Z}_{\leqslant1})}=-1 $
$\mathcal{P}_{7} $ $f{(\mathbb{Z}_{\geqslant-1})}=0 \,$and$\, f{(\mathbb{Z}_{\leqslant-2})}=-1 $
$\mathcal{P}_{8} $ $f{(\mathbb{Z}_{\geqslant-1})}=-1 \,$and$\, f{(\mathbb{Z}_{\leqslant-2})}=0 $
$Cases$ $f(n) $
$\mathcal{P}_{1} $ $f{(\mathbb{Z})}=0 $
$\mathcal{P}_{2} $ $f{(\mathbb{Z})}=-1 $
$\mathcal{P}^{c}_{3} $ $f{(\mathbb{Z}_{>0})}=-1,f{(\mathbb{Z}_{<0})}=0 \,$and$\, f{(0)}=c $
$\mathcal{P}^{c}_{4} $ $f{(\mathbb{Z}_{>0})}=0,f{(\mathbb{Z}_{<0})}=-1 \,$and$\, f{(0)}=c $
$\mathcal{P}_{5} $ $f{(\mathbb{Z}_{\geqslant2})}=-1 \,$and$\, f{(\mathbb{Z}_{\leqslant1})}=0 $
$\mathcal{P}_{6} $ $f{(\mathbb{Z}_{\geqslant2})}=0 \,$and$\, f{(\mathbb{Z}_{\leqslant1})}=-1 $
$\mathcal{P}_{7} $ $f{(\mathbb{Z}_{\geqslant-1})}=0 \,$and$\, f{(\mathbb{Z}_{\leqslant-2})}=-1 $
$\mathcal{P}_{8} $ $f{(\mathbb{Z}_{\geqslant-1})}=-1 \,$and$\, f{(\mathbb{Z}_{\leqslant-2})}=0 $
[1]

Robert I. McLachlan, Ander Murua. The Lie algebra of classical mechanics. Journal of Computational Dynamics, 2019, 6 (2) : 345-360. doi: 10.3934/jcd.2019017

[2]

Richard H. Cushman, Jędrzej Śniatycki. On Lie algebra actions. Discrete & Continuous Dynamical Systems - S, 2020, 13 (4) : 1115-1129. doi: 10.3934/dcdss.2020066

[3]

Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 1-10.

[4]

Oǧul Esen, Hasan Gümral. Geometry of plasma dynamics II: Lie algebra of Hamiltonian vector fields. Journal of Geometric Mechanics, 2012, 4 (3) : 239-269. doi: 10.3934/jgm.2012.4.239

[5]

Giovanni De Matteis, Gianni Manno. Lie algebra symmetry analysis of the Helfrich and Willmore surface shape equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 453-481. doi: 10.3934/cpaa.2014.13.453

[6]

Hongyan Guo. Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra. Electronic Research Archive, , () : -. doi: 10.3934/era.2021008

[7]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, 2021, 29 (3) : 2445-2456. doi: 10.3934/era.2020123

[8]

Neşet Deniz Turgay. On the mod p Steenrod algebra and the Leibniz-Hopf algebra. Electronic Research Archive, 2020, 28 (2) : 951-959. doi: 10.3934/era.2020050

[9]

Hari Bercovici, Viorel Niţică. A Banach algebra version of the Livsic theorem. Discrete & Continuous Dynamical Systems, 1998, 4 (3) : 523-534. doi: 10.3934/dcds.1998.4.523

[10]

Heinz-Jürgen Flad, Gohar Harutyunyan. Ellipticity of quantum mechanical Hamiltonians in the edge algebra. Conference Publications, 2011, 2011 (Special) : 420-429. doi: 10.3934/proc.2011.2011.420

[11]

Viktor Levandovskyy, Gerhard Pfister, Valery G. Romanovski. Evaluating cyclicity of cubic systems with algorithms of computational algebra. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2023-2035. doi: 10.3934/cpaa.2012.11.2023

[12]

Chris Bernhardt. Vertex maps for trees: Algebra and periods of periodic orbits. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 399-408. doi: 10.3934/dcds.2006.14.399

[13]

José Gómez-Torrecillas, F. J. Lobillo, Gabriel Navarro. Convolutional codes with a matrix-algebra word-ambient. Advances in Mathematics of Communications, 2016, 10 (1) : 29-43. doi: 10.3934/amc.2016.10.29

[14]

H. Bercovici, V. Niţică. Cohomology of higher rank abelian Anosov actions for Banach algebra valued cocycles. Conference Publications, 2001, 2001 (Special) : 50-55. doi: 10.3934/proc.2001.2001.50

[15]

A. S. Dzhumadil'daev. Jordan elements and Left-Center of a Free Leibniz algebra. Electronic Research Announcements, 2011, 18: 31-49. doi: 10.3934/era.2011.18.31

[16]

Navin Keswani. Homotopy invariance of relative eta-invariants and $C^*$-algebra $K$-theory. Electronic Research Announcements, 1998, 4: 18-26.

[17]

Fang Li, Jie Pan. On inner Poisson structures of a quantum cluster algebra without coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021021

[18]

Qiang Fu, Xin Guo, Sun Young Jeon, Eric N. Reither, Emma Zang, Kenneth C. Land. The uses and abuses of an age-period-cohort method: On the linear algebra and statistical properties of intrinsic and related estimators. Mathematical Foundations of Computing, 2021, 4 (1) : 45-59. doi: 10.3934/mfc.2021001

[19]

Juan Belmonte-Beitia, Víctor M. Pérez-García, Vadym Vekslerchik, Pedro J. Torres. Lie symmetries, qualitative analysis and exact solutions of nonlinear Schrödinger equations with inhomogeneous nonlinearities. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 221-233. doi: 10.3934/dcdsb.2008.9.221

[20]

Jun Xie, Jinlong Yuan, Dongxia Wang, Weili Liu, Chongyang Liu. Uniqueness of solutions to fuzzy relational equations regarding Max-av composition and strong regularity of the matrices in Max-av algebra. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1007-1022. doi: 10.3934/jimo.2017087

 Impact Factor: 0.263

Metrics

  • PDF downloads (35)
  • HTML views (122)
  • Cited by (0)

Other articles
by authors

[Back to Top]