doi: 10.3934/era.2021015

Ergodic measures of intermediate entropy for affine transformations of nilmanifolds

CAS Wu Wen-Tsun Key Laboratory of Mathematics, and Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China

Received  August 2020 Revised  January 2021 Published  February 2021

In this paper we study ergodic measures of intermediate entropy for affine transformations of nilmanifolds. We prove that if an affine transformation $ \tau $ of nilmanifold has a periodic point, then for every $ a\in[0, h_{top}(\tau)] $ there exists an ergodic measure $ \mu_a $ of $ \tau $ such that $ h_{\mu_a}(\tau) = a $.

Citation: Wen Huang, Leiye Xu, Shengnan Xu. Ergodic measures of intermediate entropy for affine transformations of nilmanifolds. Electronic Research Archive, doi: 10.3934/era.2021015
References:
[1]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414.  doi: 10.1090/S0002-9947-1971-0274707-X.  Google Scholar

[2]

D. Burguet, Topological and almost Borel universality for systems with the weak specification property, Ergodic Theory Dynam. Systems, 40 (2020), 2098-2115.  doi: 10.1017/etds.2019.7.  Google Scholar

[3]

J. Buzzi, Intrinsic ergodicity of smooth interval maps, Israel J. Math., 100 (1997), 125–161. doi: 10.1007/BF02773637.  Google Scholar

[4]

N. Chandgotia and T. Meyerovitch, Borel subsystems and ergodic universality for compact $\mathbb{Z}^d$-systems via specification and beyond, arXiv: 1903.05716. Google Scholar

[5]

M.-R. Herman, Construction d'un difféomorphisme minimal d'entropie topologique non nulle, Ergodic Theory Dynam. Systems, 1 (1981), 65-76.  doi: 10.1017/S0143385700001164.  Google Scholar

[6]

W. HuangX. Ye and G. Zhang, Relative entropy tuples, relative U.P.E. and C.P.E. extensions, Israel J. Math., 158 (2007), 249-283.  doi: 10.1007/s11856-007-0013-y.  Google Scholar

[7]

A. Katok, Nonuniform hyperbolicity and structure of smooth dynamical systems, Proc. Int. Congress Math., 2 (1983), 1245-1253.   Google Scholar

[8]

F. Ledrappier and P. Walters, A relativised variational principle for continuous transformations, J. London Math. Soc., 16 (1977), 568-576.  doi: 10.1112/jlms/s2-16.3.568.  Google Scholar

[9]

A. Leibman, Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold, Ergodic Theory Dynam. Systems, 25 (2005), 201-213.  doi: 10.1017/S0143385704000215.  Google Scholar

[10]

H. Li, Compact group automorphisms, addition formulas and Fuglede-Kadison determinants, Ann. of Math., 176 (2012), 303-347.  doi: 10.4007/annals.2012.176.1.5.  Google Scholar

[11]

D. A. Lind, Dynamical properties of quasihyperbolic toral automorphisms, Ergodic Theory Dynam. Systems, 2 (1982), 49-68.  doi: 10.1017/S0143385700009573.  Google Scholar

[12]

M. Misiurewicz, A short proof of the variational principle for a Z+N action on a compact space, International Conference on Dynamical Systems in Mathematical Physics (Rennes, 1975), pp. 147–157. Astérisque, No. 40, Soc. Math. France, Paris, 1976.  Google Scholar

[13]

A. Quas and T. Soo, Weak mixing suspension flows over shifts of finite type are universal,, J. Mod. Dyn., 6 (2012), 427-449.  doi: 10.3934/jmd.2012.6.427.  Google Scholar

[14]

A. Quas and T. Soo, Ergodic universality of some topological dynamical systems, Trans. Amer. Math. Soc., 368 (2016), 4137-4170.  doi: 10.1090/tran/6489.  Google Scholar

show all references

References:
[1]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414.  doi: 10.1090/S0002-9947-1971-0274707-X.  Google Scholar

[2]

D. Burguet, Topological and almost Borel universality for systems with the weak specification property, Ergodic Theory Dynam. Systems, 40 (2020), 2098-2115.  doi: 10.1017/etds.2019.7.  Google Scholar

[3]

J. Buzzi, Intrinsic ergodicity of smooth interval maps, Israel J. Math., 100 (1997), 125–161. doi: 10.1007/BF02773637.  Google Scholar

[4]

N. Chandgotia and T. Meyerovitch, Borel subsystems and ergodic universality for compact $\mathbb{Z}^d$-systems via specification and beyond, arXiv: 1903.05716. Google Scholar

[5]

M.-R. Herman, Construction d'un difféomorphisme minimal d'entropie topologique non nulle, Ergodic Theory Dynam. Systems, 1 (1981), 65-76.  doi: 10.1017/S0143385700001164.  Google Scholar

[6]

W. HuangX. Ye and G. Zhang, Relative entropy tuples, relative U.P.E. and C.P.E. extensions, Israel J. Math., 158 (2007), 249-283.  doi: 10.1007/s11856-007-0013-y.  Google Scholar

[7]

A. Katok, Nonuniform hyperbolicity and structure of smooth dynamical systems, Proc. Int. Congress Math., 2 (1983), 1245-1253.   Google Scholar

[8]

F. Ledrappier and P. Walters, A relativised variational principle for continuous transformations, J. London Math. Soc., 16 (1977), 568-576.  doi: 10.1112/jlms/s2-16.3.568.  Google Scholar

[9]

A. Leibman, Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold, Ergodic Theory Dynam. Systems, 25 (2005), 201-213.  doi: 10.1017/S0143385704000215.  Google Scholar

[10]

H. Li, Compact group automorphisms, addition formulas and Fuglede-Kadison determinants, Ann. of Math., 176 (2012), 303-347.  doi: 10.4007/annals.2012.176.1.5.  Google Scholar

[11]

D. A. Lind, Dynamical properties of quasihyperbolic toral automorphisms, Ergodic Theory Dynam. Systems, 2 (1982), 49-68.  doi: 10.1017/S0143385700009573.  Google Scholar

[12]

M. Misiurewicz, A short proof of the variational principle for a Z+N action on a compact space, International Conference on Dynamical Systems in Mathematical Physics (Rennes, 1975), pp. 147–157. Astérisque, No. 40, Soc. Math. France, Paris, 1976.  Google Scholar

[13]

A. Quas and T. Soo, Weak mixing suspension flows over shifts of finite type are universal,, J. Mod. Dyn., 6 (2012), 427-449.  doi: 10.3934/jmd.2012.6.427.  Google Scholar

[14]

A. Quas and T. Soo, Ergodic universality of some topological dynamical systems, Trans. Amer. Math. Soc., 368 (2016), 4137-4170.  doi: 10.1090/tran/6489.  Google Scholar

[1]

Jonas Deré. Periodic and eventually periodic points of affine infra-nilmanifold endomorphisms. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5347-5368. doi: 10.3934/dcds.2016035

[2]

Denis Serre, Alexis F. Vasseur. The relative entropy method for the stability of intermediate shock waves; the rich case. Discrete & Continuous Dynamical Systems, 2016, 36 (8) : 4569-4577. doi: 10.3934/dcds.2016.36.4569

[3]

Boris Kruglikov, Martin Rypdal. A piece-wise affine contracting map with positive entropy. Discrete & Continuous Dynamical Systems, 2006, 16 (2) : 393-394. doi: 10.3934/dcds.2006.16.393

[4]

Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003

[5]

Wen Huang, Jianya Liu, Ke Wang. Möbius disjointness for skew products on a circle and a nilmanifold. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3531-3553. doi: 10.3934/dcds.2021006

[6]

Lyndsey Clark. The $\beta$-transformation with a hole. Discrete & Continuous Dynamical Systems, 2016, 36 (3) : 1249-1269. doi: 10.3934/dcds.2016.36.1249

[7]

Stéphanie Portet, Julien Arino. An in vivo intermediate filament assembly model. Mathematical Biosciences & Engineering, 2009, 6 (1) : 117-134. doi: 10.3934/mbe.2009.6.117

[8]

Bing Li, Tuomas Sahlsten, Tony Samuel. Intermediate $\beta$-shifts of finite type. Discrete & Continuous Dynamical Systems, 2016, 36 (1) : 323-344. doi: 10.3934/dcds.2016.36.323

[9]

Oğul Esen, Partha Guha. On the geometry of the Schmidt-Legendre transformation. Journal of Geometric Mechanics, 2018, 10 (3) : 251-291. doi: 10.3934/jgm.2018010

[10]

Marc Chamberland, Victor H. Moll. Dynamics of the degree six Landen transformation. Discrete & Continuous Dynamical Systems, 2006, 15 (3) : 905-919. doi: 10.3934/dcds.2006.15.905

[11]

Peng Sun. Measures of intermediate entropies for skew product diffeomorphisms. Discrete & Continuous Dynamical Systems, 2010, 27 (3) : 1219-1231. doi: 10.3934/dcds.2010.27.1219

[12]

Dandan Hu, Zhi-Wei Liu. Location and capacity design of congested intermediate facilities in networks. Journal of Industrial & Management Optimization, 2016, 12 (2) : 449-470. doi: 10.3934/jimo.2016.12.449

[13]

Sze-Bi Hsu, Bernold Fiedler, Hsiu-Hau Lin. Classification of potential flows under renormalization group transformation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 437-446. doi: 10.3934/dcdsb.2016.21.437

[14]

N. Kamran, K. Tenenblat. Periodic systems for the higher-dimensional Laplace transformation. Discrete & Continuous Dynamical Systems, 1998, 4 (2) : 359-378. doi: 10.3934/dcds.1998.4.359

[15]

Hyukjin Kwean. Kwak transformation and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 433-446. doi: 10.3934/cpaa.2004.3.433

[16]

E. García-Toraño Andrés, Bavo Langerock, Frans Cantrijn. Aspects of reduction and transformation of Lagrangian systems with symmetry. Journal of Geometric Mechanics, 2014, 6 (1) : 1-23. doi: 10.3934/jgm.2014.6.1

[17]

Andrey Kochergin. A Besicovitch cylindrical transformation with Hölder function. Electronic Research Announcements, 2015, 22: 87-91. doi: 10.3934/era.2015.22.87

[18]

Xian Chen, Zhi-Ming Ma. A transformation of Markov jump processes and applications in genetic study. Discrete & Continuous Dynamical Systems, 2014, 34 (12) : 5061-5084. doi: 10.3934/dcds.2014.34.5061

[19]

Hong-Gunn Chew, Cheng-Chew Lim. On regularisation parameter transformation of support vector machines. Journal of Industrial & Management Optimization, 2009, 5 (2) : 403-415. doi: 10.3934/jimo.2009.5.403

[20]

Hongyu Liu, Ting Zhou. Two dimensional invisibility cloaking via transformation optics. Discrete & Continuous Dynamical Systems, 2011, 31 (2) : 525-543. doi: 10.3934/dcds.2011.31.525

 Impact Factor: 0.263

Article outline

[Back to Top]