-
Previous Article
Ergodic measures of intermediate entropy for affine transformations of nilmanifolds
- ERA Home
- This Issue
-
Next Article
Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations
A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart
National and Kapodistrian University of Athens, Department of Mathematics, Athens, Greece |
We establish the nonexistence of nontrivial ancient solutions to the nonlinear heat equation $ u_t = \Delta u+|u|^{p-1}u $ which are smaller in absolute value than the self-similar radial singular steady state, provided that the exponent $ p $ is strictly between Serrin's exponent and that of Joseph and Lundgren. This result was previously established by Fila and Yanagida [Tohoku Math. J. (2011)] by using forward self-similar solutions as barriers. In contrast, we apply a sweeping argument with a family of time independent weak supersolutions. Our approach naturally lends itself to yield an analogous Liouville type result for the steady state problem in higher dimensions. In fact, in the case of the critical Sobolev exponent we show the validity of our results for solutions that are smaller in absolute value than a 'Delaunay'-type singular solution.
References:
[1] |
H. Berestycki, L. A. Caffarelli and L. Nirenberg,
Monotonicity for elliptic equations in an unbounded Lipschitz domain, Comm. Pure Appl. Math., 50 (1997), 1089-1111.
doi: 10.1002/(SICI)1097-0312(199711)50:11<1089::AID-CPA2>3.0.CO;2-6. |
[2] |
L. A. Caffarelli, B. Gidas and J. Spruck,
Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.
doi: 10.1002/cpa.3160420304. |
[3] |
C.-C. Chen and C.-S. Lin,
Existence of positive weak solutions with a prescribed singular set of semilinear elliptic equations, J. Geom. Anal., 9 (1999), 221-246.
doi: 10.1007/BF02921937. |
[4] |
L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations, Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math. 143, CRC Press, Boca Raton, 2011.
doi: 10.1201/b10802.![]() ![]() |
[5] |
A. Farina,
On the classification of solutions of the Lane-Emden equation on unbouned domains of $\mathbb{R}^N$, J. Math. Pures Appl., 87 (2007), 537-561.
doi: 10.1016/j.matpur.2007.03.001. |
[6] |
M. Fila and E. Yanagida,
Homoclinic and heteroclinic orbits for a semilinear parabolic equation, Tohoku Math. J., 63 (2011), 561-579.
doi: 10.2748/tmj/1325886281. |
[7] |
B. Gidas and J. Spruck,
Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.
doi: 10.1002/cpa.3160340406. |
[8] |
C. Gui, W.-M. Ni and X. Wang,
On the stability and instability of positive steady states of a semilinear heat equation in $\mathbb{R}^n$, Comm. Pure Appl. Math., 45 (1992), 1153-1181.
doi: 10.1002/cpa.3160450906. |
[9] |
D. D. Joseph and T. S. Lundgren,
Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal., 49 (1973), 241-269.
doi: 10.1007/BF00250508. |
[10] |
G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996.
doi: 10.1142/3302. |
[11] |
A. McNabb,
Strong comparison theorems for elliptic equations of second order, J. Math. Mech., 10 (1961), 431-440.
|
[12] |
Y. Naito,
An ODE approach to the multiplicity of self-similar solutions for semi-linear heat equations, Proc. Roy. Soc. Edinburgh Sect. A, 136 (2006), 807-835.
doi: 10.1017/S0308210500004741. |
[13] |
P. Poláčik and P. Quittner,
Entire and ancient solutions of a supercritical semilinear heat equation, Discrete Cont. Dynamical Syst., 41 (2021), 413-438.
doi: 10.3934/dcds.2020136. |
[14] |
P. Poláčik, P. Quittner and Ph. Souplet,
Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part I: Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.
doi: 10.1215/S0012-7094-07-13935-8. |
[15] |
P. Poláčik, P. Quittner and Ph. Souplet,
Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part II: parabolic equations, Indiana Univ. Math. J., 56 (2007), 879-908.
doi: 10.1512/iumj.2007.56.2911. |
[16] |
P. Poláčik and E. Yanagida,
A Liouville property and quasiconvergence for a semilinear heat equation, J. Differential Equations, 208 (2005), 194-214.
doi: 10.1016/j.jde.2003.10.019. |
[17] |
P. Quittner,
Liouville theorems for scaling invariant superlinear parabolic problems with gradient structure, Math. Ann., 364 (2016), 269-292.
doi: 10.1007/s00208-015-1219-7. |
[18] |
P. Quittner, Optimal Liouville theorems for superlinear parabolic problems, Duke Math. J., to appear. Google Scholar |
[19] |
P. Quittner and Ph. Souplet, Superlinear Parabolic Problems. Blow-Up, Global Existence and Steady States, 2$^nd$ edition, Birkhäuser Advanced Texts, Birkhäuser, Basel, 2019.
doi: 10.1007/978-3-030-18222-9. |
[20] |
R. M. Schoen, Variational theory for the total scalar curvature functional for Riemannian metrics and related topics, in Topics in Calculus of Variations, Lecture Notes in Math. Springer, 1365 (1989), 120–154.
doi: 10.1007/BFb0089180. |
[21] |
C. Sourdis, A Liouville property for eternal solutions to a supercritical semilinear heat equation, preprint, arXiv: 1909.00498. Google Scholar |
show all references
References:
[1] |
H. Berestycki, L. A. Caffarelli and L. Nirenberg,
Monotonicity for elliptic equations in an unbounded Lipschitz domain, Comm. Pure Appl. Math., 50 (1997), 1089-1111.
doi: 10.1002/(SICI)1097-0312(199711)50:11<1089::AID-CPA2>3.0.CO;2-6. |
[2] |
L. A. Caffarelli, B. Gidas and J. Spruck,
Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.
doi: 10.1002/cpa.3160420304. |
[3] |
C.-C. Chen and C.-S. Lin,
Existence of positive weak solutions with a prescribed singular set of semilinear elliptic equations, J. Geom. Anal., 9 (1999), 221-246.
doi: 10.1007/BF02921937. |
[4] |
L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations, Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math. 143, CRC Press, Boca Raton, 2011.
doi: 10.1201/b10802.![]() ![]() |
[5] |
A. Farina,
On the classification of solutions of the Lane-Emden equation on unbouned domains of $\mathbb{R}^N$, J. Math. Pures Appl., 87 (2007), 537-561.
doi: 10.1016/j.matpur.2007.03.001. |
[6] |
M. Fila and E. Yanagida,
Homoclinic and heteroclinic orbits for a semilinear parabolic equation, Tohoku Math. J., 63 (2011), 561-579.
doi: 10.2748/tmj/1325886281. |
[7] |
B. Gidas and J. Spruck,
Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.
doi: 10.1002/cpa.3160340406. |
[8] |
C. Gui, W.-M. Ni and X. Wang,
On the stability and instability of positive steady states of a semilinear heat equation in $\mathbb{R}^n$, Comm. Pure Appl. Math., 45 (1992), 1153-1181.
doi: 10.1002/cpa.3160450906. |
[9] |
D. D. Joseph and T. S. Lundgren,
Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal., 49 (1973), 241-269.
doi: 10.1007/BF00250508. |
[10] |
G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996.
doi: 10.1142/3302. |
[11] |
A. McNabb,
Strong comparison theorems for elliptic equations of second order, J. Math. Mech., 10 (1961), 431-440.
|
[12] |
Y. Naito,
An ODE approach to the multiplicity of self-similar solutions for semi-linear heat equations, Proc. Roy. Soc. Edinburgh Sect. A, 136 (2006), 807-835.
doi: 10.1017/S0308210500004741. |
[13] |
P. Poláčik and P. Quittner,
Entire and ancient solutions of a supercritical semilinear heat equation, Discrete Cont. Dynamical Syst., 41 (2021), 413-438.
doi: 10.3934/dcds.2020136. |
[14] |
P. Poláčik, P. Quittner and Ph. Souplet,
Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part I: Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.
doi: 10.1215/S0012-7094-07-13935-8. |
[15] |
P. Poláčik, P. Quittner and Ph. Souplet,
Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part II: parabolic equations, Indiana Univ. Math. J., 56 (2007), 879-908.
doi: 10.1512/iumj.2007.56.2911. |
[16] |
P. Poláčik and E. Yanagida,
A Liouville property and quasiconvergence for a semilinear heat equation, J. Differential Equations, 208 (2005), 194-214.
doi: 10.1016/j.jde.2003.10.019. |
[17] |
P. Quittner,
Liouville theorems for scaling invariant superlinear parabolic problems with gradient structure, Math. Ann., 364 (2016), 269-292.
doi: 10.1007/s00208-015-1219-7. |
[18] |
P. Quittner, Optimal Liouville theorems for superlinear parabolic problems, Duke Math. J., to appear. Google Scholar |
[19] |
P. Quittner and Ph. Souplet, Superlinear Parabolic Problems. Blow-Up, Global Existence and Steady States, 2$^nd$ edition, Birkhäuser Advanced Texts, Birkhäuser, Basel, 2019.
doi: 10.1007/978-3-030-18222-9. |
[20] |
R. M. Schoen, Variational theory for the total scalar curvature functional for Riemannian metrics and related topics, in Topics in Calculus of Variations, Lecture Notes in Math. Springer, 1365 (1989), 120–154.
doi: 10.1007/BFb0089180. |
[21] |
C. Sourdis, A Liouville property for eternal solutions to a supercritical semilinear heat equation, preprint, arXiv: 1909.00498. Google Scholar |
[1] |
Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029 |
[2] |
Asato Mukai, Yukihiro Seki. Refined construction of type II blow-up solutions for semilinear heat equations with Joseph–Lundgren supercritical nonlinearity. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021060 |
[3] |
Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912 |
[4] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
[5] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[6] |
Tôn Việt Tạ. Strict solutions to stochastic semilinear evolution equations in M-type 2 Banach spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021050 |
[7] |
Peng Chen, Xiaochun Liu. Positive solutions for Choquard equation in exterior domains. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021065 |
[8] |
Mohamed Ouzahra. Approximate controllability of the semilinear reaction-diffusion equation governed by a multiplicative control. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021081 |
[9] |
Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021043 |
[10] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[11] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[12] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448 |
[13] |
Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454 |
[14] |
Raphaël Côte, Frédéric Valet. Polynomial growth of high sobolev norms of solutions to the Zakharov-Kuznetsov equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1039-1058. doi: 10.3934/cpaa.2021005 |
[15] |
Huan Zhang, Jun Zhou. Asymptotic behaviors of solutions to a sixth-order Boussinesq equation with logarithmic nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021034 |
[16] |
Shoichi Hasegawa, Norihisa Ikoma, Tatsuki Kawakami. On weak solutions to a fractional Hardy–Hénon equation: Part I: Nonexistence. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021033 |
[17] |
Claudianor O. Alves, Giovany M. Figueiredo, Riccardo Molle. Multiple positive bound state solutions for a critical Choquard equation. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021061 |
[18] |
Yanling Shi, Junxiang Xu. Quasi-periodic solutions for nonlinear wave equation with Liouvillean frequency. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3479-3490. doi: 10.3934/dcdsb.2020241 |
[19] |
Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3629-3650. doi: 10.3934/dcds.2021010 |
[20] |
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533 |
Impact Factor: 0.263
Tools
Article outline
[Back to Top]