• Previous Article
    Ergodic measures of intermediate entropy for affine transformations of nilmanifolds
  • ERA Home
  • This Issue
  • Next Article
    Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations
doi: 10.3934/era.2021016

A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart

National and Kapodistrian University of Athens, Department of Mathematics, Athens, Greece

Received  August 2020 Revised  December 2020 Published  March 2021

Fund Project: This work has received funding from the Hellenic Foundation for Research and Innovation (HFRI) and the General Secretariat for Research and Technology (GSRT), under grant agreement No 1889

We establish the nonexistence of nontrivial ancient solutions to the nonlinear heat equation $ u_t = \Delta u+|u|^{p-1}u $ which are smaller in absolute value than the self-similar radial singular steady state, provided that the exponent $ p $ is strictly between Serrin's exponent and that of Joseph and Lundgren. This result was previously established by Fila and Yanagida [Tohoku Math. J. (2011)] by using forward self-similar solutions as barriers. In contrast, we apply a sweeping argument with a family of time independent weak supersolutions. Our approach naturally lends itself to yield an analogous Liouville type result for the steady state problem in higher dimensions. In fact, in the case of the critical Sobolev exponent we show the validity of our results for solutions that are smaller in absolute value than a 'Delaunay'-type singular solution.

Citation: Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, doi: 10.3934/era.2021016
References:
[1]

H. BerestyckiL. A. Caffarelli and L. Nirenberg, Monotonicity for elliptic equations in an unbounded Lipschitz domain, Comm. Pure Appl. Math., 50 (1997), 1089-1111.  doi: 10.1002/(SICI)1097-0312(199711)50:11<1089::AID-CPA2>3.0.CO;2-6.  Google Scholar

[2]

L. A. CaffarelliB. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.  doi: 10.1002/cpa.3160420304.  Google Scholar

[3]

C.-C. Chen and C.-S. Lin, Existence of positive weak solutions with a prescribed singular set of semilinear elliptic equations, J. Geom. Anal., 9 (1999), 221-246.  doi: 10.1007/BF02921937.  Google Scholar

[4] L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations, Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math. 143, CRC Press, Boca Raton, 2011.  doi: 10.1201/b10802.  Google Scholar
[5]

A. Farina, On the classification of solutions of the Lane-Emden equation on unbouned domains of $\mathbb{R}^N$, J. Math. Pures Appl., 87 (2007), 537-561.  doi: 10.1016/j.matpur.2007.03.001.  Google Scholar

[6]

M. Fila and E. Yanagida, Homoclinic and heteroclinic orbits for a semilinear parabolic equation, Tohoku Math. J., 63 (2011), 561-579.  doi: 10.2748/tmj/1325886281.  Google Scholar

[7]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.  doi: 10.1002/cpa.3160340406.  Google Scholar

[8]

C. GuiW.-M. Ni and X. Wang, On the stability and instability of positive steady states of a semilinear heat equation in $\mathbb{R}^n$, Comm. Pure Appl. Math., 45 (1992), 1153-1181.  doi: 10.1002/cpa.3160450906.  Google Scholar

[9]

D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal., 49 (1973), 241-269.  doi: 10.1007/BF00250508.  Google Scholar

[10]

G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. doi: 10.1142/3302.  Google Scholar

[11]

A. McNabb, Strong comparison theorems for elliptic equations of second order, J. Math. Mech., 10 (1961), 431-440.   Google Scholar

[12]

Y. Naito, An ODE approach to the multiplicity of self-similar solutions for semi-linear heat equations, Proc. Roy. Soc. Edinburgh Sect. A, 136 (2006), 807-835.  doi: 10.1017/S0308210500004741.  Google Scholar

[13]

P. Poláčik and P. Quittner, Entire and ancient solutions of a supercritical semilinear heat equation, Discrete Cont. Dynamical Syst., 41 (2021), 413-438.  doi: 10.3934/dcds.2020136.  Google Scholar

[14]

P. PoláčikP. Quittner and Ph. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part I: Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.  doi: 10.1215/S0012-7094-07-13935-8.  Google Scholar

[15]

P. PoláčikP. Quittner and Ph. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part II: parabolic equations, Indiana Univ. Math. J., 56 (2007), 879-908.  doi: 10.1512/iumj.2007.56.2911.  Google Scholar

[16]

P. Poláčik and E. Yanagida, A Liouville property and quasiconvergence for a semilinear heat equation, J. Differential Equations, 208 (2005), 194-214.  doi: 10.1016/j.jde.2003.10.019.  Google Scholar

[17]

P. Quittner, Liouville theorems for scaling invariant superlinear parabolic problems with gradient structure, Math. Ann., 364 (2016), 269-292.  doi: 10.1007/s00208-015-1219-7.  Google Scholar

[18]

P. Quittner, Optimal Liouville theorems for superlinear parabolic problems, Duke Math. J., to appear. Google Scholar

[19]

P. Quittner and Ph. Souplet, Superlinear Parabolic Problems. Blow-Up, Global Existence and Steady States, 2$^nd$ edition, Birkhäuser Advanced Texts, Birkhäuser, Basel, 2019. doi: 10.1007/978-3-030-18222-9.  Google Scholar

[20]

R. M. Schoen, Variational theory for the total scalar curvature functional for Riemannian metrics and related topics, in Topics in Calculus of Variations, Lecture Notes in Math. Springer, 1365 (1989), 120–154. doi: 10.1007/BFb0089180.  Google Scholar

[21]

C. Sourdis, A Liouville property for eternal solutions to a supercritical semilinear heat equation, preprint, arXiv: 1909.00498. Google Scholar

show all references

References:
[1]

H. BerestyckiL. A. Caffarelli and L. Nirenberg, Monotonicity for elliptic equations in an unbounded Lipschitz domain, Comm. Pure Appl. Math., 50 (1997), 1089-1111.  doi: 10.1002/(SICI)1097-0312(199711)50:11<1089::AID-CPA2>3.0.CO;2-6.  Google Scholar

[2]

L. A. CaffarelliB. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.  doi: 10.1002/cpa.3160420304.  Google Scholar

[3]

C.-C. Chen and C.-S. Lin, Existence of positive weak solutions with a prescribed singular set of semilinear elliptic equations, J. Geom. Anal., 9 (1999), 221-246.  doi: 10.1007/BF02921937.  Google Scholar

[4] L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations, Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math. 143, CRC Press, Boca Raton, 2011.  doi: 10.1201/b10802.  Google Scholar
[5]

A. Farina, On the classification of solutions of the Lane-Emden equation on unbouned domains of $\mathbb{R}^N$, J. Math. Pures Appl., 87 (2007), 537-561.  doi: 10.1016/j.matpur.2007.03.001.  Google Scholar

[6]

M. Fila and E. Yanagida, Homoclinic and heteroclinic orbits for a semilinear parabolic equation, Tohoku Math. J., 63 (2011), 561-579.  doi: 10.2748/tmj/1325886281.  Google Scholar

[7]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.  doi: 10.1002/cpa.3160340406.  Google Scholar

[8]

C. GuiW.-M. Ni and X. Wang, On the stability and instability of positive steady states of a semilinear heat equation in $\mathbb{R}^n$, Comm. Pure Appl. Math., 45 (1992), 1153-1181.  doi: 10.1002/cpa.3160450906.  Google Scholar

[9]

D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal., 49 (1973), 241-269.  doi: 10.1007/BF00250508.  Google Scholar

[10]

G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. doi: 10.1142/3302.  Google Scholar

[11]

A. McNabb, Strong comparison theorems for elliptic equations of second order, J. Math. Mech., 10 (1961), 431-440.   Google Scholar

[12]

Y. Naito, An ODE approach to the multiplicity of self-similar solutions for semi-linear heat equations, Proc. Roy. Soc. Edinburgh Sect. A, 136 (2006), 807-835.  doi: 10.1017/S0308210500004741.  Google Scholar

[13]

P. Poláčik and P. Quittner, Entire and ancient solutions of a supercritical semilinear heat equation, Discrete Cont. Dynamical Syst., 41 (2021), 413-438.  doi: 10.3934/dcds.2020136.  Google Scholar

[14]

P. PoláčikP. Quittner and Ph. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part I: Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.  doi: 10.1215/S0012-7094-07-13935-8.  Google Scholar

[15]

P. PoláčikP. Quittner and Ph. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part II: parabolic equations, Indiana Univ. Math. J., 56 (2007), 879-908.  doi: 10.1512/iumj.2007.56.2911.  Google Scholar

[16]

P. Poláčik and E. Yanagida, A Liouville property and quasiconvergence for a semilinear heat equation, J. Differential Equations, 208 (2005), 194-214.  doi: 10.1016/j.jde.2003.10.019.  Google Scholar

[17]

P. Quittner, Liouville theorems for scaling invariant superlinear parabolic problems with gradient structure, Math. Ann., 364 (2016), 269-292.  doi: 10.1007/s00208-015-1219-7.  Google Scholar

[18]

P. Quittner, Optimal Liouville theorems for superlinear parabolic problems, Duke Math. J., to appear. Google Scholar

[19]

P. Quittner and Ph. Souplet, Superlinear Parabolic Problems. Blow-Up, Global Existence and Steady States, 2$^nd$ edition, Birkhäuser Advanced Texts, Birkhäuser, Basel, 2019. doi: 10.1007/978-3-030-18222-9.  Google Scholar

[20]

R. M. Schoen, Variational theory for the total scalar curvature functional for Riemannian metrics and related topics, in Topics in Calculus of Variations, Lecture Notes in Math. Springer, 1365 (1989), 120–154. doi: 10.1007/BFb0089180.  Google Scholar

[21]

C. Sourdis, A Liouville property for eternal solutions to a supercritical semilinear heat equation, preprint, arXiv: 1909.00498. Google Scholar

[1]

Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029

[2]

Asato Mukai, Yukihiro Seki. Refined construction of type II blow-up solutions for semilinear heat equations with Joseph–Lundgren supercritical nonlinearity. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021060

[3]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[4]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[5]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[6]

Tôn Việt Tạ. Strict solutions to stochastic semilinear evolution equations in M-type 2 Banach spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021050

[7]

Peng Chen, Xiaochun Liu. Positive solutions for Choquard equation in exterior domains. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021065

[8]

Mohamed Ouzahra. Approximate controllability of the semilinear reaction-diffusion equation governed by a multiplicative control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021081

[9]

Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021043

[10]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[11]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[12]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[13]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454

[14]

Raphaël Côte, Frédéric Valet. Polynomial growth of high sobolev norms of solutions to the Zakharov-Kuznetsov equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1039-1058. doi: 10.3934/cpaa.2021005

[15]

Huan Zhang, Jun Zhou. Asymptotic behaviors of solutions to a sixth-order Boussinesq equation with logarithmic nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021034

[16]

Shoichi Hasegawa, Norihisa Ikoma, Tatsuki Kawakami. On weak solutions to a fractional Hardy–Hénon equation: Part I: Nonexistence. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021033

[17]

Claudianor O. Alves, Giovany M. Figueiredo, Riccardo Molle. Multiple positive bound state solutions for a critical Choquard equation. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021061

[18]

Yanling Shi, Junxiang Xu. Quasi-periodic solutions for nonlinear wave equation with Liouvillean frequency. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3479-3490. doi: 10.3934/dcdsb.2020241

[19]

Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3629-3650. doi: 10.3934/dcds.2021010

[20]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

 Impact Factor: 0.263

Article outline

[Back to Top]