doi: 10.3934/era.2021020

Structure of sympathetic Lie superalgebras

School of Mathematics and Statistics, Northeast Normal University, Changchun 130034, China

* Corresponding author: chenly640@nenu.edu.cn

Received  July 2020 Revised  February 2021 Published  March 2021

Fund Project: Supported by NNSF of China (Nos. 11771069 and 12071405)

Sympathetic Lie superalgebras are defined and some classical properties of sympathetic Lie superalgebras are given. Among the main results, we prove that any Lie superalgebra $ L $ contains a maximal sympathetic graded ideal and we obtain some properties about sympathetic decomposition. More specifically, we study a general sympathetic Lie superalgebra $ L $ with graded ideals $ I $, $ J $ and $ S $ such that $ L = I\oplus J $ and $ L/S $ is a sympathetic Lie superalgebra, and we obtain some properties of $ L/S $. Furthermore, under certain assumptions on $ L $ we prove that the derivation algebra $ \mathrm{Der}(L) $ is sympathetic and that if in addition $ L $ is indecomposable, then $ \mathrm{Der}(L) $ is simply sympathetic.

Citation: Yusi Fan, Chenrui Yao, Liangyun Chen. Structure of sympathetic Lie superalgebras. Electronic Research Archive, doi: 10.3934/era.2021020
References:
[1]

E. Angelopoulos, Algèbres de Lie $\mathfrak{g}$ satisfaisant $[\mathfrak{g}, \mathfrak{g}] = \mathfrak{g}$, $\text{Der}\mathfrak{g} = \text{ad}\mathfrak{g}$, (French) C. R. Acad. Sci. Paris Sér. I Math., 306 (1988), 523-525.   Google Scholar

[2]

S. Benayadi, Certaines propriétés d'une classe d'algèbres de Lie qui généralisent les algèbres de Lie semi-simples, Ann. Fac. Sci. Toulouse Math., 12 (1991), 29-35.  doi: 10.5802/afst.717.  Google Scholar

[3]

S. Benayadi, Structure of perfect Lie algebras without center and outer derivations, Ann. Fac. Sci. Toulouse Math., 5 (1996), 203-231.  doi: 10.5802/afst.828.  Google Scholar

[4]

J.-H. Chun and J.-S. Lee, On complete Lie superalgebras, Commun. Korean Math. Soc., 11 (1996), 323-334.   Google Scholar

[5]

N. Jacobson, Lie Algebras, Willey New York, 1962.  Google Scholar

[6]

C. P. JiangD. J. Meng and S. Q. Zhang, Some complete Lie algebras, J. Algebra, 186 (1996), 807-817.  doi: 10.1006/jabr.1996.0396.  Google Scholar

[7]

V. G. Kac, Lie superalgebras, Advances in Math., 26 (1977), 8-96.  doi: 10.1016/0001-8708(77)90017-2.  Google Scholar

[8]

T. S. Ravisankar, Characteristically nilpotent algebras, Canadian J. Math., 23 (1971), 222-235.  doi: 10.4153/CJM-1971-022-2.  Google Scholar

[9]

M. Scheunert, The Theory of Lie Superalgebra, Lecture notes in mathematics 716, Springer-verlag Berlin Heidelberg New-York, 1979.  Google Scholar

[10]

Y. Su and L. Zhu, Derivation algebras of centerless perfect Lie algebras are complete, J. Algebra, 285 (2005), 508-515.  doi: 10.1016/j.jalgebra.2004.09.033.  Google Scholar

show all references

References:
[1]

E. Angelopoulos, Algèbres de Lie $\mathfrak{g}$ satisfaisant $[\mathfrak{g}, \mathfrak{g}] = \mathfrak{g}$, $\text{Der}\mathfrak{g} = \text{ad}\mathfrak{g}$, (French) C. R. Acad. Sci. Paris Sér. I Math., 306 (1988), 523-525.   Google Scholar

[2]

S. Benayadi, Certaines propriétés d'une classe d'algèbres de Lie qui généralisent les algèbres de Lie semi-simples, Ann. Fac. Sci. Toulouse Math., 12 (1991), 29-35.  doi: 10.5802/afst.717.  Google Scholar

[3]

S. Benayadi, Structure of perfect Lie algebras without center and outer derivations, Ann. Fac. Sci. Toulouse Math., 5 (1996), 203-231.  doi: 10.5802/afst.828.  Google Scholar

[4]

J.-H. Chun and J.-S. Lee, On complete Lie superalgebras, Commun. Korean Math. Soc., 11 (1996), 323-334.   Google Scholar

[5]

N. Jacobson, Lie Algebras, Willey New York, 1962.  Google Scholar

[6]

C. P. JiangD. J. Meng and S. Q. Zhang, Some complete Lie algebras, J. Algebra, 186 (1996), 807-817.  doi: 10.1006/jabr.1996.0396.  Google Scholar

[7]

V. G. Kac, Lie superalgebras, Advances in Math., 26 (1977), 8-96.  doi: 10.1016/0001-8708(77)90017-2.  Google Scholar

[8]

T. S. Ravisankar, Characteristically nilpotent algebras, Canadian J. Math., 23 (1971), 222-235.  doi: 10.4153/CJM-1971-022-2.  Google Scholar

[9]

M. Scheunert, The Theory of Lie Superalgebra, Lecture notes in mathematics 716, Springer-verlag Berlin Heidelberg New-York, 1979.  Google Scholar

[10]

Y. Su and L. Zhu, Derivation algebras of centerless perfect Lie algebras are complete, J. Algebra, 285 (2005), 508-515.  doi: 10.1016/j.jalgebra.2004.09.033.  Google Scholar

[1]

Christian Meyer, Stephan Walther. Optimal control of perfect plasticity part I: Stress tracking. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021022

[2]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[3]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[4]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[5]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[6]

Lars Grüne, Luca Mechelli, Simon Pirkelmann, Stefan Volkwein. Performance estimates for economic model predictive control and their application in proper orthogonal decomposition-based implementations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021013

 Impact Factor: 0.263

Article outline

[Back to Top]