• Previous Article
    Immersed hybrid difference methods for elliptic boundary value problems by artificial interface conditions
  • ERA Home
  • This Issue
  • Next Article
    A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart
doi: 10.3934/era.2021021

On inner Poisson structures of a quantum cluster algebra without coefficients

Department of Mathematics, Zhejiang University (Yuquan Campus), Hangzhou, Zhejiang 310027, China

* Corresponding author

Received  July 2020 Revised  January 2021 Early access  March 2021

The main aim of this article is to characterize inner Poisson structure on a quantum cluster algebra without coefficients. Mainly, we prove that inner Poisson structure on a quantum cluster algebra without coefficients is always a standard Poisson structure. We introduce the concept of so-called locally inner Poisson structure on a quantum cluster algebra and then show it is equivalent to locally standard Poisson structure in the case without coefficients. Based on the result from [7] we obtain finally the equivalence between locally inner Poisson structure and compatible Poisson structure in this case.

Citation: Fang Li, Jie Pan. On inner Poisson structures of a quantum cluster algebra without coefficients. Electronic Research Archive, doi: 10.3934/era.2021021
References:
[1]

A. Berenstein and A. Zelevinsky, Quantum cluster algebras, Adv. Math., 195 (2005), 405-455.  doi: 10.1016/j.aim.2004.08.003.  Google Scholar

[2]

C. Geiß, B. Leclerc and J. Schröer, Cluster structures on quantum coordinate rings, Selecta Math, 19 (2013) 337–397. doi: 10.1007/s00029-012-0099-x.  Google Scholar

[3]

M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster Algebras and Poisson Geometry, Mathematical Surveys and Monographs Volume 167, American Mathematical Society Providence, Rhode Island, 2010. doi: 10.1090/surv/167.  Google Scholar

[4]

M. Gerstenhaber, On the deformation of rings and algebras, Ann. of Math., 79 (1964), 59-103.  doi: 10.2307/1970484.  Google Scholar

[5]

K. R. Goodearl and M. T. Yakimov, Quantum cluster algebra structures on quantum nilpotent algebras, Mem. Amer. Math. Soc., 247 (2017), no.1169, arXiv: 1309.7869. doi: 10.1090/memo/1169.  Google Scholar

[6]

R. Inoue and T. Nakanishi, Difference equations and cluster algebras I: Poisson bracket for integrable difference equations, in Infinite Analysis 2010 - Developments in Quantum Integrable Systems, RIMS Kokyuroku Bessatsu, Vol.B28, Res. Inst. Math. Sci. (RIMS), Kyoto, 2011, 63–88, arXiv: 1012.5574.  Google Scholar

[7]

F. Li and J. Pan, Poisson structure and second quantization of quantum cluster algebras, preprint, arXiv: 2003.12257v3. Google Scholar

[8]

Y. YaoY. Ye and P. Zhang, Quiver Poisson algebras, J. Algebra, 312 (2007), 570-589.  doi: 10.1016/j.jalgebra.2007.03.034.  Google Scholar

show all references

References:
[1]

A. Berenstein and A. Zelevinsky, Quantum cluster algebras, Adv. Math., 195 (2005), 405-455.  doi: 10.1016/j.aim.2004.08.003.  Google Scholar

[2]

C. Geiß, B. Leclerc and J. Schröer, Cluster structures on quantum coordinate rings, Selecta Math, 19 (2013) 337–397. doi: 10.1007/s00029-012-0099-x.  Google Scholar

[3]

M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster Algebras and Poisson Geometry, Mathematical Surveys and Monographs Volume 167, American Mathematical Society Providence, Rhode Island, 2010. doi: 10.1090/surv/167.  Google Scholar

[4]

M. Gerstenhaber, On the deformation of rings and algebras, Ann. of Math., 79 (1964), 59-103.  doi: 10.2307/1970484.  Google Scholar

[5]

K. R. Goodearl and M. T. Yakimov, Quantum cluster algebra structures on quantum nilpotent algebras, Mem. Amer. Math. Soc., 247 (2017), no.1169, arXiv: 1309.7869. doi: 10.1090/memo/1169.  Google Scholar

[6]

R. Inoue and T. Nakanishi, Difference equations and cluster algebras I: Poisson bracket for integrable difference equations, in Infinite Analysis 2010 - Developments in Quantum Integrable Systems, RIMS Kokyuroku Bessatsu, Vol.B28, Res. Inst. Math. Sci. (RIMS), Kyoto, 2011, 63–88, arXiv: 1012.5574.  Google Scholar

[7]

F. Li and J. Pan, Poisson structure and second quantization of quantum cluster algebras, preprint, arXiv: 2003.12257v3. Google Scholar

[8]

Y. YaoY. Ye and P. Zhang, Quiver Poisson algebras, J. Algebra, 312 (2007), 570-589.  doi: 10.1016/j.jalgebra.2007.03.034.  Google Scholar

[1]

Marco A. Fontelos, Lucía B. Gamboa. On the structure of double layers in Poisson-Boltzmann equation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1939-1967. doi: 10.3934/dcdsb.2012.17.1939

[2]

Shuping Li, Zhen Jin. Impacts of cluster on network topology structure and epidemic spreading. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3749-3770. doi: 10.3934/dcdsb.2017187

[3]

Philipp Fuchs, Ansgar Jüngel, Max von Renesse. On the Lagrangian structure of quantum fluid models. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1375-1396. doi: 10.3934/dcds.2014.34.1375

[4]

Hai-Liang Li, Hongjun Yu, Mingying Zhong. Spectrum structure and optimal decay rate of the relativistic Vlasov-Poisson-Landau system. Kinetic & Related Models, 2017, 10 (4) : 1089-1125. doi: 10.3934/krm.2017043

[5]

Dongfen Bian, Huimin Liu, Xueke Pu. Modulation approximation for the quantum Euler-Poisson equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (8) : 4375-4405. doi: 10.3934/dcdsb.2020292

[6]

Min Li, Xueke Pu, Shu Wang. Quasineutral limit for the quantum Navier-Stokes-Poisson equations. Communications on Pure & Applied Analysis, 2017, 16 (1) : 273-294. doi: 10.3934/cpaa.2017013

[7]

Heinz-Jürgen Flad, Gohar Harutyunyan. Ellipticity of quantum mechanical Hamiltonians in the edge algebra. Conference Publications, 2011, 2011 (Special) : 420-429. doi: 10.3934/proc.2011.2011.420

[8]

Boris Kolev. Poisson brackets in Hydrodynamics. Discrete & Continuous Dynamical Systems, 2007, 19 (3) : 555-574. doi: 10.3934/dcds.2007.19.555

[9]

Yusi Fan, Chenrui Yao, Liangyun Chen. Structure of sympathetic Lie superalgebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2021020

[10]

Jana Rodriguez Hertz, Carlos H. Vásquez. Structure of accessibility classes. Discrete & Continuous Dynamical Systems, 2020, 40 (8) : 4653-4664. doi: 10.3934/dcds.2020196

[11]

Jianjun Tian, Bai-Lian Li. Coalgebraic Structure of Genetic Inheritance. Mathematical Biosciences & Engineering, 2004, 1 (2) : 243-266. doi: 10.3934/mbe.2004.1.243

[12]

V. Balaji, I. Biswas and D. S. Nagaraj. Principal bundles with parabolic structure. Electronic Research Announcements, 2001, 7: 37-44.

[13]

Dmitry Tamarkin. Quantization of Poisson structures on R^2. Electronic Research Announcements, 1997, 3: 119-120.

[14]

Sobhan Seyfaddini. Spectral killers and Poisson bracket invariants. Journal of Modern Dynamics, 2015, 9: 51-66. doi: 10.3934/jmd.2015.9.51

[15]

C. Davini, F. Jourdan. Approximations of degree zero in the Poisson problem. Communications on Pure & Applied Analysis, 2005, 4 (2) : 267-281. doi: 10.3934/cpaa.2005.4.267

[16]

Lubomir Kostal, Shigeru Shinomoto. Efficient information transfer by Poisson neurons. Mathematical Biosciences & Engineering, 2016, 13 (3) : 509-520. doi: 10.3934/mbe.2016004

[17]

Oliver Knill. A deterministic displacement theorem for Poisson processes. Electronic Research Announcements, 1997, 3: 110-113.

[18]

Yacine Aït Amrane, Rafik Nasri, Ahmed Zeglaoui. Warped Poisson brackets on warped products. Journal of Geometric Mechanics, 2014, 6 (3) : 279-296. doi: 10.3934/jgm.2014.6.279

[19]

Frol Zapolsky. On almost Poisson commutativity in dimension two. Electronic Research Announcements, 2010, 17: 155-160. doi: 10.3934/era.2010.17.155

[20]

Vincent Giovangigli, Lionel Matuszewski. Structure of entropies in dissipative multicomponent fluids. Kinetic & Related Models, 2013, 6 (2) : 373-406. doi: 10.3934/krm.2013.6.373

2020 Impact Factor: 1.833

Metrics

  • PDF downloads (43)
  • HTML views (165)
  • Cited by (0)

Other articles
by authors

[Back to Top]