
-
Previous Article
Note on coisotropic Floer homology and leafwise fixed points
- ERA Home
- This Issue
-
Next Article
Simultaneous recovery of surface heat flux and thickness of a solid structure by ultrasonic measurements
Complexity in time-delay networks of multiple interacting neural groups
Department of Engineering Mechanics, College of Mechanics and Materials, Hohai University, Nanjing 211100, China |
Coupled networks are common in diverse real-world systems and the dynamical properties are crucial for their function and application. This paper focuses on the behaviors of a network consisting of mutually coupled neural groups and time-delayed interactions. These interacting groups can include different sets of nodes and topological architecture, respectively. The local and global stability of the system are analyzed and the stable regions and bifurcation curves in parameter planes are obtained. Different patterns of bifurcated solutions arising from trivial and non-trivial equilibrium points are given, such as the coexistence of non-trivial equilibrium points and periodic responses and multiple coexisting periodic orbits. The bifurcation diagrams are shown and plenty of complex dynamic phenomena are observed, such as multi-period oscillations and multiple coexisting attractors.
References:
[1] |
F. Battiston, V. Nicosia, M. Chavez and V. Latora, Multilayer motif analysis of brain networks, Chaos, 27 (2017), 047404, 8 pp.
doi: 10.1063/1.4979282. |
[2] |
S. Boccaletti, G. Bianconi, R. Criado, C. I. del Genio, J. Gómez-Gardeñes, M. Romance, I. Sendiña-Nadal, Z. Wang and M. Zanin,
The structure and dynamics of multilayer networks, Phys. Rep., 544 (2014), 1-122.
doi: 10.1016/j.physrep.2014.07.001. |
[3] |
S. A. Campbell, R. Edwards and P. van den Driessche,
Delayed coupling between two neural network loops, SIAM J. Appl. Math., 65 (2004), 316-335.
doi: 10.1137/S0036139903434833. |
[4] |
D. G. Fan, Y. H. Zheng, Z. C. Yang and Q. Y. Wang, Improving control effects of absence seizures using single-pulse alternately resetting stimulation (SARS) of corticothalamic circuit, Appl. Math. Mech. (Eng. Edit.), 41 (2020), 1287-1302. Google Scholar |
[5] |
F. Frohlich and M. Bazhenov, Coexistence of tonic firing and bursting in cortical neurons, Phys. Rev. E, 74 (2006), 031922. Google Scholar |
[6] |
F. Han, Z. Wang, Y. Du, X. Sun and B. Zhang, Robust synchronization of bursting Hodgkin-Huxley neuronal systems coupled by delayed chemical synapses, Int. J. Nonlinear Mech., 70 (2015), 105-111. Google Scholar |
[7] |
J. J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons, Proc. Nati. Acad. Sci. USA, 81 (1984), 3088-3092. Google Scholar |
[8] |
C.-H. Hsu and T.-S. Yang,
Periodic oscillations arising and death in delay-coupled neural loops, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 4015-4032.
doi: 10.1142/S0218127407019834. |
[9] |
H. Y. Hu and Z. H. Wang, Dynamics of Controlled Mechanical Systems with Delayed Feedback, Springer-Verlag, Heidelberg, 2002.
doi: 10.1007/978-3-662-05030-9. |
[10] |
S. Majhi, M. Perc and D. Ghosh, Chimera states in uncoupled neurons induced by a multilayer structure, Sci. Rep., 6 (2016), 39033. Google Scholar |
[11] |
X. Mao, X. Li, W. Ding, S. Wang, X. Zhou and L. Qiao, Dynamics of a multiplex neural network with delayed couplings, Appl. Math. Mech. (Eng. Edit.), (2021).
doi: 10.1007/s10483-021-2709-6. |
[12] |
D. Nikitin, I. Omelchenko, A. Zakharova, M. Avetyan, A. L. Fradkov and E. Schöll, Complex partial synchronization patterns in networks of delay-coupled neurons, Philos. Trans. Roy. Soc. A, 377 (2019), 20180128, 19 pp.
doi: 10.1098/rsta.2018.0128. |
[13] |
J. Sawicki, I. Omelchenko, A. Zakharova and E. Schoell, Delay controls chimera relay synchronization in multiplex networks, Phys. Rev. E, 98 (2018), 062224. Google Scholar |
[14] |
Z. Wang, S. Liang, C. A. Molnar, T. Insperger and G. Stepan, Parametric continuation algorithm for time-delay systems and bifurcation caused by multiple characteristic roots, Nonlinear Dynam., (2020).
doi: 10.1007/s11071-020-05799-w. |
[15] |
X. Xu, D. Yu and Z. Wang,
Inter-layer synchronization of periodic solutions in two coupled rings with time delay, Physica D, 396 (2019), 1-11.
doi: 10.1016/j.physd.2019.02.010. |
show all references
References:
[1] |
F. Battiston, V. Nicosia, M. Chavez and V. Latora, Multilayer motif analysis of brain networks, Chaos, 27 (2017), 047404, 8 pp.
doi: 10.1063/1.4979282. |
[2] |
S. Boccaletti, G. Bianconi, R. Criado, C. I. del Genio, J. Gómez-Gardeñes, M. Romance, I. Sendiña-Nadal, Z. Wang and M. Zanin,
The structure and dynamics of multilayer networks, Phys. Rep., 544 (2014), 1-122.
doi: 10.1016/j.physrep.2014.07.001. |
[3] |
S. A. Campbell, R. Edwards and P. van den Driessche,
Delayed coupling between two neural network loops, SIAM J. Appl. Math., 65 (2004), 316-335.
doi: 10.1137/S0036139903434833. |
[4] |
D. G. Fan, Y. H. Zheng, Z. C. Yang and Q. Y. Wang, Improving control effects of absence seizures using single-pulse alternately resetting stimulation (SARS) of corticothalamic circuit, Appl. Math. Mech. (Eng. Edit.), 41 (2020), 1287-1302. Google Scholar |
[5] |
F. Frohlich and M. Bazhenov, Coexistence of tonic firing and bursting in cortical neurons, Phys. Rev. E, 74 (2006), 031922. Google Scholar |
[6] |
F. Han, Z. Wang, Y. Du, X. Sun and B. Zhang, Robust synchronization of bursting Hodgkin-Huxley neuronal systems coupled by delayed chemical synapses, Int. J. Nonlinear Mech., 70 (2015), 105-111. Google Scholar |
[7] |
J. J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons, Proc. Nati. Acad. Sci. USA, 81 (1984), 3088-3092. Google Scholar |
[8] |
C.-H. Hsu and T.-S. Yang,
Periodic oscillations arising and death in delay-coupled neural loops, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 4015-4032.
doi: 10.1142/S0218127407019834. |
[9] |
H. Y. Hu and Z. H. Wang, Dynamics of Controlled Mechanical Systems with Delayed Feedback, Springer-Verlag, Heidelberg, 2002.
doi: 10.1007/978-3-662-05030-9. |
[10] |
S. Majhi, M. Perc and D. Ghosh, Chimera states in uncoupled neurons induced by a multilayer structure, Sci. Rep., 6 (2016), 39033. Google Scholar |
[11] |
X. Mao, X. Li, W. Ding, S. Wang, X. Zhou and L. Qiao, Dynamics of a multiplex neural network with delayed couplings, Appl. Math. Mech. (Eng. Edit.), (2021).
doi: 10.1007/s10483-021-2709-6. |
[12] |
D. Nikitin, I. Omelchenko, A. Zakharova, M. Avetyan, A. L. Fradkov and E. Schöll, Complex partial synchronization patterns in networks of delay-coupled neurons, Philos. Trans. Roy. Soc. A, 377 (2019), 20180128, 19 pp.
doi: 10.1098/rsta.2018.0128. |
[13] |
J. Sawicki, I. Omelchenko, A. Zakharova and E. Schoell, Delay controls chimera relay synchronization in multiplex networks, Phys. Rev. E, 98 (2018), 062224. Google Scholar |
[14] |
Z. Wang, S. Liang, C. A. Molnar, T. Insperger and G. Stepan, Parametric continuation algorithm for time-delay systems and bifurcation caused by multiple characteristic roots, Nonlinear Dynam., (2020).
doi: 10.1007/s11071-020-05799-w. |
[15] |
X. Xu, D. Yu and Z. Wang,
Inter-layer synchronization of periodic solutions in two coupled rings with time delay, Physica D, 396 (2019), 1-11.
doi: 10.1016/j.physd.2019.02.010. |











[1] |
Manisha Pujari, Rushed Kanawati. Link prediction in multiplex networks. Networks & Heterogeneous Media, 2015, 10 (1) : 17-35. doi: 10.3934/nhm.2015.10.17 |
[2] |
Maria Conceição A. Leite, Yunjiao Wang. Multistability, oscillations and bifurcations in feedback loops. Mathematical Biosciences & Engineering, 2010, 7 (1) : 83-97. doi: 10.3934/mbe.2010.7.83 |
[3] |
Manel Hmimida, Rushed Kanawati. Community detection in multiplex networks: A seed-centric approach. Networks & Heterogeneous Media, 2015, 10 (1) : 71-85. doi: 10.3934/nhm.2015.10.71 |
[4] |
Rosa M. Benito, Regino Criado, Juan C. Losada, Miguel Romance. Preface: "New trends, models and applications in complex and multiplex networks". Networks & Heterogeneous Media, 2015, 10 (1) : i-iii. doi: 10.3934/nhm.2015.10.1i |
[5] |
Tingting Su, Xinsong Yang. Finite-time synchronization of competitive neural networks with mixed delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3655-3667. doi: 10.3934/dcdsb.2016115 |
[6] |
Cheng-Hsiung Hsu, Suh-Yuh Yang. Traveling wave solutions in cellular neural networks with multiple time delays. Conference Publications, 2005, 2005 (Special) : 410-419. doi: 10.3934/proc.2005.2005.410 |
[7] |
Wenlian Lu, Fatihcan M. Atay, Jürgen Jost. Consensus and synchronization in discrete-time networks of multi-agents with stochastically switching topologies and time delays. Networks & Heterogeneous Media, 2011, 6 (2) : 329-349. doi: 10.3934/nhm.2011.6.329 |
[8] |
Min Yu, Gang Huang, Yueping Dong, Yasuhiro Takeuchi. Complicated dynamics of tumor-immune system interaction model with distributed time delay. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2391-2406. doi: 10.3934/dcdsb.2020015 |
[9] |
Ruoxia Li, Huaiqin Wu, Xiaowei Zhang, Rong Yao. Adaptive projective synchronization of memristive neural networks with time-varying delays and stochastic perturbation. Mathematical Control & Related Fields, 2015, 5 (4) : 827-844. doi: 10.3934/mcrf.2015.5.827 |
[10] |
Zhigang Zeng, Tingwen Huang. New passivity analysis of continuous-time recurrent neural networks with multiple discrete delays. Journal of Industrial & Management Optimization, 2011, 7 (2) : 283-289. doi: 10.3934/jimo.2011.7.283 |
[11] |
Udhayakumar Kandasamy, Rakkiyappan Rajan. Hopf bifurcation of a fractional-order octonion-valued neural networks with time delays. Discrete & Continuous Dynamical Systems - S, 2020, 13 (9) : 2537-2559. doi: 10.3934/dcdss.2020137 |
[12] |
Guy Katriel. Stability of synchronized oscillations in networks of phase-oscillators. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 353-364. doi: 10.3934/dcdsb.2005.5.353 |
[13] |
Theodore Vo, Richard Bertram, Martin Wechselberger. Bifurcations of canard-induced mixed mode oscillations in a pituitary Lactotroph model. Discrete & Continuous Dynamical Systems, 2012, 32 (8) : 2879-2912. doi: 10.3934/dcds.2012.32.2879 |
[14] |
Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221 |
[15] |
Yong Zhao, Qishao Lu. Periodic oscillations in a class of fuzzy neural networks under impulsive control. Conference Publications, 2011, 2011 (Special) : 1457-1466. doi: 10.3934/proc.2011.2011.1457 |
[16] |
Julien Coatléven, Claudio Altafini. A kinetic mechanism inducing oscillations in simple chemical reactions networks. Mathematical Biosciences & Engineering, 2010, 7 (2) : 301-312. doi: 10.3934/mbe.2010.7.301 |
[17] |
Nicola Guglielmi, László Hatvani. On small oscillations of mechanical systems with time-dependent kinetic and potential energy. Discrete & Continuous Dynamical Systems, 2008, 20 (4) : 911-926. doi: 10.3934/dcds.2008.20.911 |
[18] |
Jui-Pin Tseng. Global asymptotic dynamics of a class of nonlinearly coupled neural networks with delays. Discrete & Continuous Dynamical Systems, 2013, 33 (10) : 4693-4729. doi: 10.3934/dcds.2013.33.4693 |
[19] |
Raoul-Martin Memmesheimer, Marc Timme. Stable and unstable periodic orbits in complex networks of spiking neurons with delays. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1555-1588. doi: 10.3934/dcds.2010.28.1555 |
[20] |
Meiyu Sui, Yejuan Wang, Peter E. Kloeden. Pullback attractors for stochastic recurrent neural networks with discrete and distributed delays. Electronic Research Archive, 2021, 29 (2) : 2187-2221. doi: 10.3934/era.2020112 |
Impact Factor: 0.263
Tools
Metrics
Other articles
by authors
[Back to Top]