• Previous Article
    Regularity of Wong-Zakai approximation for non-autonomous stochastic quasi-linear parabolic equation on $ {\mathbb{R}}^N $
  • ERA Home
  • This Issue
  • Next Article
    Simultaneous recovery of surface heat flux and thickness of a solid structure by ultrasonic measurements
doi: 10.3934/era.2021022
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Complexity in time-delay networks of multiple interacting neural groups

Department of Engineering Mechanics, College of Mechanics and Materials, Hohai University, Nanjing 211100, China

* Corresponding author: Xiaochen Mao

Received  December 2020 Revised  January 2021 Early access March 2021

Fund Project: The first author is supported by the National Natural Science Foundation of China under Grant Nos. 11872169 and 11472097, Fundamental Research Funds for the Central Universities of China under Grant No. B200202114, and Natural Science Foundation of Jiangsu Province of China under Grant No. BK20191295

Coupled networks are common in diverse real-world systems and the dynamical properties are crucial for their function and application. This paper focuses on the behaviors of a network consisting of mutually coupled neural groups and time-delayed interactions. These interacting groups can include different sets of nodes and topological architecture, respectively. The local and global stability of the system are analyzed and the stable regions and bifurcation curves in parameter planes are obtained. Different patterns of bifurcated solutions arising from trivial and non-trivial equilibrium points are given, such as the coexistence of non-trivial equilibrium points and periodic responses and multiple coexisting periodic orbits. The bifurcation diagrams are shown and plenty of complex dynamic phenomena are observed, such as multi-period oscillations and multiple coexisting attractors.

Citation: Xiaochen Mao, Weijie Ding, Xiangyu Zhou, Song Wang, Xingyong Li. Complexity in time-delay networks of multiple interacting neural groups. Electronic Research Archive, doi: 10.3934/era.2021022
References:
[1]

F. Battiston, V. Nicosia, M. Chavez and V. Latora, Multilayer motif analysis of brain networks, Chaos, 27 (2017), 047404, 8 pp. doi: 10.1063/1.4979282.  Google Scholar

[2]

S. BoccalettiG. BianconiR. CriadoC. I. del GenioJ. Gómez-GardeñesM. RomanceI. Sendiña-NadalZ. Wang and M. Zanin, The structure and dynamics of multilayer networks, Phys. Rep., 544 (2014), 1-122.  doi: 10.1016/j.physrep.2014.07.001.  Google Scholar

[3]

S. A. CampbellR. Edwards and P. van den Driessche, Delayed coupling between two neural network loops, SIAM J. Appl. Math., 65 (2004), 316-335.  doi: 10.1137/S0036139903434833.  Google Scholar

[4]

D. G. FanY. H. ZhengZ. C. Yang and Q. Y. Wang, Improving control effects of absence seizures using single-pulse alternately resetting stimulation (SARS) of corticothalamic circuit, Appl. Math. Mech. (Eng. Edit.), 41 (2020), 1287-1302.   Google Scholar

[5]

F. Frohlich and M. Bazhenov, Coexistence of tonic firing and bursting in cortical neurons, Phys. Rev. E, 74 (2006), 031922. Google Scholar

[6]

F. HanZ. WangY. DuX. Sun and B. Zhang, Robust synchronization of bursting Hodgkin-Huxley neuronal systems coupled by delayed chemical synapses, Int. J. Nonlinear Mech., 70 (2015), 105-111.   Google Scholar

[7]

J. J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons, Proc. Nati. Acad. Sci. USA, 81 (1984), 3088-3092.   Google Scholar

[8]

C.-H. Hsu and T.-S. Yang, Periodic oscillations arising and death in delay-coupled neural loops, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 4015-4032.  doi: 10.1142/S0218127407019834.  Google Scholar

[9]

H. Y. Hu and Z. H. Wang, Dynamics of Controlled Mechanical Systems with Delayed Feedback, Springer-Verlag, Heidelberg, 2002. doi: 10.1007/978-3-662-05030-9.  Google Scholar

[10]

S. Majhi, M. Perc and D. Ghosh, Chimera states in uncoupled neurons induced by a multilayer structure, Sci. Rep., 6 (2016), 39033. Google Scholar

[11]

X. Mao, X. Li, W. Ding, S. Wang, X. Zhou and L. Qiao, Dynamics of a multiplex neural network with delayed couplings, Appl. Math. Mech. (Eng. Edit.), (2021). doi: 10.1007/s10483-021-2709-6.  Google Scholar

[12]

D. Nikitin, I. Omelchenko, A. Zakharova, M. Avetyan, A. L. Fradkov and E. Schöll, Complex partial synchronization patterns in networks of delay-coupled neurons, Philos. Trans. Roy. Soc. A, 377 (2019), 20180128, 19 pp. doi: 10.1098/rsta.2018.0128.  Google Scholar

[13]

J. Sawicki, I. Omelchenko, A. Zakharova and E. Schoell, Delay controls chimera relay synchronization in multiplex networks, Phys. Rev. E, 98 (2018), 062224. Google Scholar

[14]

Z. Wang, S. Liang, C. A. Molnar, T. Insperger and G. Stepan, Parametric continuation algorithm for time-delay systems and bifurcation caused by multiple characteristic roots, Nonlinear Dynam., (2020). doi: 10.1007/s11071-020-05799-w.  Google Scholar

[15]

X. XuD. Yu and Z. Wang, Inter-layer synchronization of periodic solutions in two coupled rings with time delay, Physica D, 396 (2019), 1-11.  doi: 10.1016/j.physd.2019.02.010.  Google Scholar

show all references

References:
[1]

F. Battiston, V. Nicosia, M. Chavez and V. Latora, Multilayer motif analysis of brain networks, Chaos, 27 (2017), 047404, 8 pp. doi: 10.1063/1.4979282.  Google Scholar

[2]

S. BoccalettiG. BianconiR. CriadoC. I. del GenioJ. Gómez-GardeñesM. RomanceI. Sendiña-NadalZ. Wang and M. Zanin, The structure and dynamics of multilayer networks, Phys. Rep., 544 (2014), 1-122.  doi: 10.1016/j.physrep.2014.07.001.  Google Scholar

[3]

S. A. CampbellR. Edwards and P. van den Driessche, Delayed coupling between two neural network loops, SIAM J. Appl. Math., 65 (2004), 316-335.  doi: 10.1137/S0036139903434833.  Google Scholar

[4]

D. G. FanY. H. ZhengZ. C. Yang and Q. Y. Wang, Improving control effects of absence seizures using single-pulse alternately resetting stimulation (SARS) of corticothalamic circuit, Appl. Math. Mech. (Eng. Edit.), 41 (2020), 1287-1302.   Google Scholar

[5]

F. Frohlich and M. Bazhenov, Coexistence of tonic firing and bursting in cortical neurons, Phys. Rev. E, 74 (2006), 031922. Google Scholar

[6]

F. HanZ. WangY. DuX. Sun and B. Zhang, Robust synchronization of bursting Hodgkin-Huxley neuronal systems coupled by delayed chemical synapses, Int. J. Nonlinear Mech., 70 (2015), 105-111.   Google Scholar

[7]

J. J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons, Proc. Nati. Acad. Sci. USA, 81 (1984), 3088-3092.   Google Scholar

[8]

C.-H. Hsu and T.-S. Yang, Periodic oscillations arising and death in delay-coupled neural loops, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 4015-4032.  doi: 10.1142/S0218127407019834.  Google Scholar

[9]

H. Y. Hu and Z. H. Wang, Dynamics of Controlled Mechanical Systems with Delayed Feedback, Springer-Verlag, Heidelberg, 2002. doi: 10.1007/978-3-662-05030-9.  Google Scholar

[10]

S. Majhi, M. Perc and D. Ghosh, Chimera states in uncoupled neurons induced by a multilayer structure, Sci. Rep., 6 (2016), 39033. Google Scholar

[11]

X. Mao, X. Li, W. Ding, S. Wang, X. Zhou and L. Qiao, Dynamics of a multiplex neural network with delayed couplings, Appl. Math. Mech. (Eng. Edit.), (2021). doi: 10.1007/s10483-021-2709-6.  Google Scholar

[12]

D. Nikitin, I. Omelchenko, A. Zakharova, M. Avetyan, A. L. Fradkov and E. Schöll, Complex partial synchronization patterns in networks of delay-coupled neurons, Philos. Trans. Roy. Soc. A, 377 (2019), 20180128, 19 pp. doi: 10.1098/rsta.2018.0128.  Google Scholar

[13]

J. Sawicki, I. Omelchenko, A. Zakharova and E. Schoell, Delay controls chimera relay synchronization in multiplex networks, Phys. Rev. E, 98 (2018), 062224. Google Scholar

[14]

Z. Wang, S. Liang, C. A. Molnar, T. Insperger and G. Stepan, Parametric continuation algorithm for time-delay systems and bifurcation caused by multiple characteristic roots, Nonlinear Dynam., (2020). doi: 10.1007/s11071-020-05799-w.  Google Scholar

[15]

X. XuD. Yu and Z. Wang, Inter-layer synchronization of periodic solutions in two coupled rings with time delay, Physica D, 396 (2019), 1-11.  doi: 10.1016/j.physd.2019.02.010.  Google Scholar

Figure 1.  Stability region of three delay-coupled networks with different nodes
Figure 2.  Stability region of four delay-coupled networks, where the solid curves are $ 1-\alpha-2\alpha^2-\beta_1+\alpha\beta_1 = 0 $ and $ 1-\alpha-2\alpha^2+\beta_1-\alpha\beta_1 = 0 $
Figure 3.  Amplitudes of the periodic oscillations when the sum of coupling time delays varies. (a) $ c_1 = -1.4 $, $ c_2 = 0.4 $, $ c_3 = 2.5 $, $ \tau_1 = 0.3 $, and $ \tau_2 = 0.5 $; (b) $ c_1 = 1.5 $, $ c_2 = 0.8 $, $ c_3 = 1.4 $, $ \tau_1 = 0.1 $, and $ \tau_2 = 0.1 $
Figure 4.  Stability region of the trivial equilibrium of three coupled networks with different topologies. (a) $ a = 0.4 $; (b) $ c = -1.3 $
Figure 5.  Responses of interacting three-node networks with different topologies. (a) $ \tau_s = 1.5 $; (b) $ \tau_s = 1.7 $; (c) $ \tau_s = 2.1 $
Figure 6.  Phase trajectories of the network when $ \tau_s = 0.17 $. (a) Two coexisting period-6 oscillations under initial conditions IC1 (0.1, 0.2, 0.5, 0.8, 0.3, 0.7, 0.9, 0.4, 0.6) and IC2 (-0.1, -0.2, -0.5, -0.8, -0.3, -0.7, -0.9, -0.4, -0.6), respectively; (b) Two chaotic motions under initial conditions IC3 (-0.1, 0.2, 0.5, 0.8, 0.3, 0.7, -0.9, 0.4, 0.6) and IC4 (0.1, -0.2, -0.5, -0.8, -0.3, -0.7, 0.9, -0.4, -0.6), respectively. The blue, red, green, and purple curves represent phase trajectories under initial conditions IC1, IC2, IC3, and IC4, respectively
Figure 7.  Phase trajectories of the network when $ \tau_s = 0.25 $. (a) Two period-3 oscillations under initial conditions IC1 and IC2, respectively; (b) Two chaotic motions under initial conditions IC3 and IC4, respectively
Figure 8.  Phase trajectories of the network when $ \tau_s = 0.43 $. (a) Two separated chaotic attractors under initial conditions IC1 and IC2, respectively; (b) Two coexisting period-4 orbits under initial conditions IC3 and IC4, respectively
Figure 9.  Phase trajectories of the network when $ \tau_s = 0.47 $. (a) Two chaotic responses under initial conditions IC1 and IC2, respectively; (b) Two symmetric period-2 oscillations under initial conditions IC3 and IC4, respectively
Figure 10.  Phase trajectories of the network when $ \tau_s = 1.73 $. (a) A pair of period-4 responses under initial conditions IC1 and IC2, respectively; (b) Another pair of period-4 oscillations under initial conditions IC3 and IC4, respectively
Figure 11.  Bifurcation diagrams on the Poincaré section when the time delay varies. The blue, red, green, and purple dots are obtained under the initial conditions IC1, IC2, IC3, and IC4, respectively
[1]

Manisha Pujari, Rushed Kanawati. Link prediction in multiplex networks. Networks & Heterogeneous Media, 2015, 10 (1) : 17-35. doi: 10.3934/nhm.2015.10.17

[2]

Maria Conceição A. Leite, Yunjiao Wang. Multistability, oscillations and bifurcations in feedback loops. Mathematical Biosciences & Engineering, 2010, 7 (1) : 83-97. doi: 10.3934/mbe.2010.7.83

[3]

Manel Hmimida, Rushed Kanawati. Community detection in multiplex networks: A seed-centric approach. Networks & Heterogeneous Media, 2015, 10 (1) : 71-85. doi: 10.3934/nhm.2015.10.71

[4]

Rosa M. Benito, Regino Criado, Juan C. Losada, Miguel Romance. Preface: "New trends, models and applications in complex and multiplex networks". Networks & Heterogeneous Media, 2015, 10 (1) : i-iii. doi: 10.3934/nhm.2015.10.1i

[5]

Tingting Su, Xinsong Yang. Finite-time synchronization of competitive neural networks with mixed delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3655-3667. doi: 10.3934/dcdsb.2016115

[6]

Cheng-Hsiung Hsu, Suh-Yuh Yang. Traveling wave solutions in cellular neural networks with multiple time delays. Conference Publications, 2005, 2005 (Special) : 410-419. doi: 10.3934/proc.2005.2005.410

[7]

Wenlian Lu, Fatihcan M. Atay, Jürgen Jost. Consensus and synchronization in discrete-time networks of multi-agents with stochastically switching topologies and time delays. Networks & Heterogeneous Media, 2011, 6 (2) : 329-349. doi: 10.3934/nhm.2011.6.329

[8]

Min Yu, Gang Huang, Yueping Dong, Yasuhiro Takeuchi. Complicated dynamics of tumor-immune system interaction model with distributed time delay. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2391-2406. doi: 10.3934/dcdsb.2020015

[9]

Ruoxia Li, Huaiqin Wu, Xiaowei Zhang, Rong Yao. Adaptive projective synchronization of memristive neural networks with time-varying delays and stochastic perturbation. Mathematical Control & Related Fields, 2015, 5 (4) : 827-844. doi: 10.3934/mcrf.2015.5.827

[10]

Zhigang Zeng, Tingwen Huang. New passivity analysis of continuous-time recurrent neural networks with multiple discrete delays. Journal of Industrial & Management Optimization, 2011, 7 (2) : 283-289. doi: 10.3934/jimo.2011.7.283

[11]

Udhayakumar Kandasamy, Rakkiyappan Rajan. Hopf bifurcation of a fractional-order octonion-valued neural networks with time delays. Discrete & Continuous Dynamical Systems - S, 2020, 13 (9) : 2537-2559. doi: 10.3934/dcdss.2020137

[12]

Guy Katriel. Stability of synchronized oscillations in networks of phase-oscillators. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 353-364. doi: 10.3934/dcdsb.2005.5.353

[13]

Theodore Vo, Richard Bertram, Martin Wechselberger. Bifurcations of canard-induced mixed mode oscillations in a pituitary Lactotroph model. Discrete & Continuous Dynamical Systems, 2012, 32 (8) : 2879-2912. doi: 10.3934/dcds.2012.32.2879

[14]

Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221

[15]

Yong Zhao, Qishao Lu. Periodic oscillations in a class of fuzzy neural networks under impulsive control. Conference Publications, 2011, 2011 (Special) : 1457-1466. doi: 10.3934/proc.2011.2011.1457

[16]

Julien Coatléven, Claudio Altafini. A kinetic mechanism inducing oscillations in simple chemical reactions networks. Mathematical Biosciences & Engineering, 2010, 7 (2) : 301-312. doi: 10.3934/mbe.2010.7.301

[17]

Nicola Guglielmi, László Hatvani. On small oscillations of mechanical systems with time-dependent kinetic and potential energy. Discrete & Continuous Dynamical Systems, 2008, 20 (4) : 911-926. doi: 10.3934/dcds.2008.20.911

[18]

Jui-Pin Tseng. Global asymptotic dynamics of a class of nonlinearly coupled neural networks with delays. Discrete & Continuous Dynamical Systems, 2013, 33 (10) : 4693-4729. doi: 10.3934/dcds.2013.33.4693

[19]

Raoul-Martin Memmesheimer, Marc Timme. Stable and unstable periodic orbits in complex networks of spiking neurons with delays. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1555-1588. doi: 10.3934/dcds.2010.28.1555

[20]

Meiyu Sui, Yejuan Wang, Peter E. Kloeden. Pullback attractors for stochastic recurrent neural networks with discrete and distributed delays. Electronic Research Archive, 2021, 29 (2) : 2187-2221. doi: 10.3934/era.2020112

2020 Impact Factor: 1.833

Article outline

Figures and Tables

[Back to Top]