• Previous Article
    Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM
  • ERA Home
  • This Issue
  • Next Article
    Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case
doi: 10.3934/era.2021022

Complexity in time-delay networks of multiple interacting neural groups

Department of Engineering Mechanics, College of Mechanics and Materials, Hohai University, Nanjing 211100, China

* Corresponding author: Xiaochen Mao

Received  December 2020 Revised  January 2021 Published  March 2021

Fund Project: The first author is supported by the National Natural Science Foundation of China under Grant Nos. 11872169 and 11472097, Fundamental Research Funds for the Central Universities of China under Grant No. B200202114, and Natural Science Foundation of Jiangsu Province of China under Grant No. BK20191295

Coupled networks are common in diverse real-world systems and the dynamical properties are crucial for their function and application. This paper focuses on the behaviors of a network consisting of mutually coupled neural groups and time-delayed interactions. These interacting groups can include different sets of nodes and topological architecture, respectively. The local and global stability of the system are analyzed and the stable regions and bifurcation curves in parameter planes are obtained. Different patterns of bifurcated solutions arising from trivial and non-trivial equilibrium points are given, such as the coexistence of non-trivial equilibrium points and periodic responses and multiple coexisting periodic orbits. The bifurcation diagrams are shown and plenty of complex dynamic phenomena are observed, such as multi-period oscillations and multiple coexisting attractors.

Citation: Xiaochen Mao, Weijie Ding, Xiangyu Zhou, Song Wang, Xingyong Li. Complexity in time-delay networks of multiple interacting neural groups. Electronic Research Archive, doi: 10.3934/era.2021022
References:
[1]

F. Battiston, V. Nicosia, M. Chavez and V. Latora, Multilayer motif analysis of brain networks, Chaos, 27 (2017), 047404, 8 pp. doi: 10.1063/1.4979282.  Google Scholar

[2]

S. BoccalettiG. BianconiR. CriadoC. I. del GenioJ. Gómez-GardeñesM. RomanceI. Sendiña-NadalZ. Wang and M. Zanin, The structure and dynamics of multilayer networks, Phys. Rep., 544 (2014), 1-122.  doi: 10.1016/j.physrep.2014.07.001.  Google Scholar

[3]

S. A. CampbellR. Edwards and P. van den Driessche, Delayed coupling between two neural network loops, SIAM J. Appl. Math., 65 (2004), 316-335.  doi: 10.1137/S0036139903434833.  Google Scholar

[4]

D. G. FanY. H. ZhengZ. C. Yang and Q. Y. Wang, Improving control effects of absence seizures using single-pulse alternately resetting stimulation (SARS) of corticothalamic circuit, Appl. Math. Mech. (Eng. Edit.), 41 (2020), 1287-1302.   Google Scholar

[5]

F. Frohlich and M. Bazhenov, Coexistence of tonic firing and bursting in cortical neurons, Phys. Rev. E, 74 (2006), 031922. Google Scholar

[6]

F. HanZ. WangY. DuX. Sun and B. Zhang, Robust synchronization of bursting Hodgkin-Huxley neuronal systems coupled by delayed chemical synapses, Int. J. Nonlinear Mech., 70 (2015), 105-111.   Google Scholar

[7]

J. J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons, Proc. Nati. Acad. Sci. USA, 81 (1984), 3088-3092.   Google Scholar

[8]

C.-H. Hsu and T.-S. Yang, Periodic oscillations arising and death in delay-coupled neural loops, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 4015-4032.  doi: 10.1142/S0218127407019834.  Google Scholar

[9]

H. Y. Hu and Z. H. Wang, Dynamics of Controlled Mechanical Systems with Delayed Feedback, Springer-Verlag, Heidelberg, 2002. doi: 10.1007/978-3-662-05030-9.  Google Scholar

[10]

S. Majhi, M. Perc and D. Ghosh, Chimera states in uncoupled neurons induced by a multilayer structure, Sci. Rep., 6 (2016), 39033. Google Scholar

[11]

X. Mao, X. Li, W. Ding, S. Wang, X. Zhou and L. Qiao, Dynamics of a multiplex neural network with delayed couplings, Appl. Math. Mech. (Eng. Edit.), (2021). doi: 10.1007/s10483-021-2709-6.  Google Scholar

[12]

D. Nikitin, I. Omelchenko, A. Zakharova, M. Avetyan, A. L. Fradkov and E. Schöll, Complex partial synchronization patterns in networks of delay-coupled neurons, Philos. Trans. Roy. Soc. A, 377 (2019), 20180128, 19 pp. doi: 10.1098/rsta.2018.0128.  Google Scholar

[13]

J. Sawicki, I. Omelchenko, A. Zakharova and E. Schoell, Delay controls chimera relay synchronization in multiplex networks, Phys. Rev. E, 98 (2018), 062224. Google Scholar

[14]

Z. Wang, S. Liang, C. A. Molnar, T. Insperger and G. Stepan, Parametric continuation algorithm for time-delay systems and bifurcation caused by multiple characteristic roots, Nonlinear Dynam., (2020). doi: 10.1007/s11071-020-05799-w.  Google Scholar

[15]

X. XuD. Yu and Z. Wang, Inter-layer synchronization of periodic solutions in two coupled rings with time delay, Physica D, 396 (2019), 1-11.  doi: 10.1016/j.physd.2019.02.010.  Google Scholar

show all references

References:
[1]

F. Battiston, V. Nicosia, M. Chavez and V. Latora, Multilayer motif analysis of brain networks, Chaos, 27 (2017), 047404, 8 pp. doi: 10.1063/1.4979282.  Google Scholar

[2]

S. BoccalettiG. BianconiR. CriadoC. I. del GenioJ. Gómez-GardeñesM. RomanceI. Sendiña-NadalZ. Wang and M. Zanin, The structure and dynamics of multilayer networks, Phys. Rep., 544 (2014), 1-122.  doi: 10.1016/j.physrep.2014.07.001.  Google Scholar

[3]

S. A. CampbellR. Edwards and P. van den Driessche, Delayed coupling between two neural network loops, SIAM J. Appl. Math., 65 (2004), 316-335.  doi: 10.1137/S0036139903434833.  Google Scholar

[4]

D. G. FanY. H. ZhengZ. C. Yang and Q. Y. Wang, Improving control effects of absence seizures using single-pulse alternately resetting stimulation (SARS) of corticothalamic circuit, Appl. Math. Mech. (Eng. Edit.), 41 (2020), 1287-1302.   Google Scholar

[5]

F. Frohlich and M. Bazhenov, Coexistence of tonic firing and bursting in cortical neurons, Phys. Rev. E, 74 (2006), 031922. Google Scholar

[6]

F. HanZ. WangY. DuX. Sun and B. Zhang, Robust synchronization of bursting Hodgkin-Huxley neuronal systems coupled by delayed chemical synapses, Int. J. Nonlinear Mech., 70 (2015), 105-111.   Google Scholar

[7]

J. J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons, Proc. Nati. Acad. Sci. USA, 81 (1984), 3088-3092.   Google Scholar

[8]

C.-H. Hsu and T.-S. Yang, Periodic oscillations arising and death in delay-coupled neural loops, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 4015-4032.  doi: 10.1142/S0218127407019834.  Google Scholar

[9]

H. Y. Hu and Z. H. Wang, Dynamics of Controlled Mechanical Systems with Delayed Feedback, Springer-Verlag, Heidelberg, 2002. doi: 10.1007/978-3-662-05030-9.  Google Scholar

[10]

S. Majhi, M. Perc and D. Ghosh, Chimera states in uncoupled neurons induced by a multilayer structure, Sci. Rep., 6 (2016), 39033. Google Scholar

[11]

X. Mao, X. Li, W. Ding, S. Wang, X. Zhou and L. Qiao, Dynamics of a multiplex neural network with delayed couplings, Appl. Math. Mech. (Eng. Edit.), (2021). doi: 10.1007/s10483-021-2709-6.  Google Scholar

[12]

D. Nikitin, I. Omelchenko, A. Zakharova, M. Avetyan, A. L. Fradkov and E. Schöll, Complex partial synchronization patterns in networks of delay-coupled neurons, Philos. Trans. Roy. Soc. A, 377 (2019), 20180128, 19 pp. doi: 10.1098/rsta.2018.0128.  Google Scholar

[13]

J. Sawicki, I. Omelchenko, A. Zakharova and E. Schoell, Delay controls chimera relay synchronization in multiplex networks, Phys. Rev. E, 98 (2018), 062224. Google Scholar

[14]

Z. Wang, S. Liang, C. A. Molnar, T. Insperger and G. Stepan, Parametric continuation algorithm for time-delay systems and bifurcation caused by multiple characteristic roots, Nonlinear Dynam., (2020). doi: 10.1007/s11071-020-05799-w.  Google Scholar

[15]

X. XuD. Yu and Z. Wang, Inter-layer synchronization of periodic solutions in two coupled rings with time delay, Physica D, 396 (2019), 1-11.  doi: 10.1016/j.physd.2019.02.010.  Google Scholar

Figure 1.  Stability region of three delay-coupled networks with different nodes
Figure 2.  Stability region of four delay-coupled networks, where the solid curves are $ 1-\alpha-2\alpha^2-\beta_1+\alpha\beta_1 = 0 $ and $ 1-\alpha-2\alpha^2+\beta_1-\alpha\beta_1 = 0 $
Figure 3.  Amplitudes of the periodic oscillations when the sum of coupling time delays varies. (a) $ c_1 = -1.4 $, $ c_2 = 0.4 $, $ c_3 = 2.5 $, $ \tau_1 = 0.3 $, and $ \tau_2 = 0.5 $; (b) $ c_1 = 1.5 $, $ c_2 = 0.8 $, $ c_3 = 1.4 $, $ \tau_1 = 0.1 $, and $ \tau_2 = 0.1 $
Figure 4.  Stability region of the trivial equilibrium of three coupled networks with different topologies. (a) $ a = 0.4 $; (b) $ c = -1.3 $
Figure 5.  Responses of interacting three-node networks with different topologies. (a) $ \tau_s = 1.5 $; (b) $ \tau_s = 1.7 $; (c) $ \tau_s = 2.1 $
Figure 6.  Phase trajectories of the network when $ \tau_s = 0.17 $. (a) Two coexisting period-6 oscillations under initial conditions IC1 (0.1, 0.2, 0.5, 0.8, 0.3, 0.7, 0.9, 0.4, 0.6) and IC2 (-0.1, -0.2, -0.5, -0.8, -0.3, -0.7, -0.9, -0.4, -0.6), respectively; (b) Two chaotic motions under initial conditions IC3 (-0.1, 0.2, 0.5, 0.8, 0.3, 0.7, -0.9, 0.4, 0.6) and IC4 (0.1, -0.2, -0.5, -0.8, -0.3, -0.7, 0.9, -0.4, -0.6), respectively. The blue, red, green, and purple curves represent phase trajectories under initial conditions IC1, IC2, IC3, and IC4, respectively
Figure 7.  Phase trajectories of the network when $ \tau_s = 0.25 $. (a) Two period-3 oscillations under initial conditions IC1 and IC2, respectively; (b) Two chaotic motions under initial conditions IC3 and IC4, respectively
Figure 8.  Phase trajectories of the network when $ \tau_s = 0.43 $. (a) Two separated chaotic attractors under initial conditions IC1 and IC2, respectively; (b) Two coexisting period-4 orbits under initial conditions IC3 and IC4, respectively
Figure 9.  Phase trajectories of the network when $ \tau_s = 0.47 $. (a) Two chaotic responses under initial conditions IC1 and IC2, respectively; (b) Two symmetric period-2 oscillations under initial conditions IC3 and IC4, respectively
Figure 10.  Phase trajectories of the network when $ \tau_s = 1.73 $. (a) A pair of period-4 responses under initial conditions IC1 and IC2, respectively; (b) Another pair of period-4 oscillations under initial conditions IC3 and IC4, respectively
Figure 11.  Bifurcation diagrams on the Poincaré section when the time delay varies. The blue, red, green, and purple dots are obtained under the initial conditions IC1, IC2, IC3, and IC4, respectively
[1]

Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221

[2]

Xiaochun Gu, Fang Han, Zhijie Wang, Kaleem Kashif, Wenlian Lu. Enhancement of gamma oscillations in E/I neural networks by increase of difference between external inputs. Electronic Research Archive, , () : -. doi: 10.3934/era.2021035

[3]

Demou Luo, Qiru Wang. Dynamic analysis on an almost periodic predator-prey system with impulsive effects and time delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3427-3453. doi: 10.3934/dcdsb.2020238

[4]

Pengyu Chen, Xuping Zhang, Zhitao Zhang. Asymptotic behavior of time periodic solutions for extended Fisher-Kolmogorov equations with delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021103

[5]

Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200

[6]

Zhigang Pan, Yiqiu Mao, Quan Wang, Yuchen Yang. Transitions and bifurcations of Darcy-Brinkman-Marangoni convection. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021106

[7]

Juan Manuel Pastor, Javier García-Algarra, José M. Iriondo, José J. Ramasco, Javier Galeano. Dragging in mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 37-52. doi: 10.3934/nhm.2015.10.37

[8]

Gheorghe Craciun, Jiaxin Jin, Polly Y. Yu. Single-target networks. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021065

[9]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[10]

Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025

[11]

Jiyu Zhong. Qualitative properties and bifurcations of a leaf-eating herbivores model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3381-3407. doi: 10.3934/dcdsb.2020236

[12]

Alessandro Gondolo, Fernando Guevara Vasquez. Characterization and synthesis of Rayleigh damped elastodynamic networks. Networks & Heterogeneous Media, 2014, 9 (2) : 299-314. doi: 10.3934/nhm.2014.9.299

[13]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[14]

John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026

[15]

Pengyu Chen. Periodic solutions to non-autonomous evolution equations with multi-delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2921-2939. doi: 10.3934/dcdsb.2020211

[16]

Akio Matsumoto, Ferenc Szidarovszky. Stability switching and its directions in cournot duopoly game with three delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021069

[17]

Chunhua Shan. Slow-fast dynamics and nonlinear oscillations in transmission of mosquito-borne diseases. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021097

[18]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[19]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[20]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, 2021, 20 (3) : 995-1023. doi: 10.3934/cpaa.2021003

 Impact Factor: 0.263

Article outline

Figures and Tables

[Back to Top]