
-
Previous Article
Global behavior of P-dimensional difference equations system
- ERA Home
- This Issue
-
Next Article
Refined Wilf-equivalences by Comtet statistics
Picture groups and maximal green sequences
1. | Brandeis University, MS050, 415 South St, Waltham, MA 02454-9110, USA |
2. | Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA |
We show that picture groups are directly related to maximal green sequences for valued Dynkin quivers of finite type. Namely, there is a bijection between maximal green sequences and positive expressions (words in the generators without inverses) for the Coxeter element of the picture group. We actually prove the theorem for the more general set up of finite "vertically and laterally ordered" sets of positive real Schur roots for any hereditary algebra (not necessarily of finite type).
Furthermore, we show that every picture for such a set of positive roots is a linear combination of "atoms" and we give a precise description of atoms as special semi-invariant pictures.
References:
[1] |
T. Adachi, O. Iyama and I. Reiten,
$\tau$-tilting theory, Compos. Math., 150 (2014), 415-452.
doi: 10.1112/S0010437X13007422. |
[2] |
C. Amiot,
Cluster categories for algebras of global dimension 2 and quivers with potential, Ann. Inst. Fourier (Grenoble), 59 (2009), 2525-2590.
doi: 10.5802/aif.2499. |
[3] |
T. Bridgeland,
Stability conditions on triangulated categories, Ann. of Math., 166 (2007), 317-345.
doi: 10.4007/annals.2007.166.317. |
[4] |
T. Brüstle, G. Dupont and M. Pérotin,
On maximal green sequences, Int. Math. Res. Not. IMRN, 2014 (2014), 4547-4586.
doi: 10.1093/imrn/rnt075. |
[5] |
T. Brüstle, S. Hermes, K. Igusa and G. Todorov, Semi-invariant pictures and two conjectures on maximal green sequences, J. Algebra, 473 (2017), 80-109.
doi: 10.1016/j. jalgebra. 2016.10.025. |
[6] |
T. Brüstle, D. Smith and H. Treffinger, Wall and chamber structure for finite-dimensional algebras, Adv. Math., 354 (2019), 106746, 31 pp.
doi: 10.1016/j. aim. 2019.106746. |
[7] |
A. B. Buan, R. J. Marsh and I. Reiten, Cluster-tilted algebras, Trans. Amer. Math. Soc., 359 (2007), 323-332.
doi: 10.1090/S0002-9947-06-03879-7. |
[8] |
A. B. Buan, R. Marsh, M. Reineke, I. Reiten and G. Todorov,
Tilting theory and cluster combinatorics, Adv. Math., 204 (2006), 572-618.
doi: 10.1016/j.aim.2005.06.003. |
[9] |
W. Crawley-Boevey, Exceptional sequences of representations of quivers, Representations of Algebras, (Ottawa, ON, 1992) 14 (1993), 117-124. |
[10] |
H. Derksen and J. Weyman,
Semi-invariants of quivers and saturation for Littlewood-Richardson coefficients, J. Amer. Math. Soc., 13 (2000), 467-479.
doi: 10.1090/S0894-0347-00-00331-3. |
[11] |
H. Derksen, J. Weyman and A. Zelevinsky, Quivers with potentials and their representations I: Mutations, Selecta Math., 14 (2008), 59-119.
doi: 10.1007/s00029-008-0057-9. |
[12] |
H. Derksen, J. Weyman and A. Zelevinsky,
Quivers with potentials and their representations II: Applications to cluster algebras, J. Amer. Math. Soc., 23 (2010), 749-790.
doi: 10.1090/S0894-0347-10-00662-4. |
[13] |
S. Fomin and A. Zelevinsky,
Cluster algebras I: Foundations, J. Amer. Math. Soc., 15 (2002), 497-529.
doi: 10.1090/S0894-0347-01-00385-X. |
[14] |
S. Fomin and A. Zelevinsky,
Cluster algebras II: Finite type classification, Invent. Math., 154 (2003), 63-121.
doi: 10.1007/s00222-003-0302-y. |
[15] |
S. M. Gersten,
$K\sb{3}$ of a ring is $H\sb{3}$ of the Steinberg group, Proc. Amer. Math. Soc., 37 (1973), 366-368.
doi: 10.2307/2039440. |
[16] |
A. Hatcher and J. Wagoner, Pseudo-Isotopies of Compact Manifolds, Société mathématique de France, 1973. |
[17] |
K. Igusa, The $Wh_3(\pi)$ Obstruction for Pseudoisotopy, PhD thesis, Princeton University, 1979. |
[18] |
▬▬▬▬▬, The Borel regulator map on pictures, I: A dilogarithm formula, K-Theory, 7, (1993). Google Scholar |
[19] |
▬▬▬▬▬, The category of noncrossing partitions, preprint, arXiv: 1411.0196. Google Scholar |
[20] |
▬▬▬▬▬, Linearity of stability conditions, Communications in Algebra, (2020), 1-26. Google Scholar |
[21] |
K. Igusa, Maximal green sequences for cluster-tilted algebras of finite representation type, Algebr. Comb., 2 (2019), 753-780.
doi: 10.5802/alco. 61. |
[22] |
K. Igusa and J. Klein,
The Borel regulator map on pictures. II. An example from Morse theory, $K$-Theory, 7 (1993), 225-267.
doi: 10.1007/BF00961065. |
[23] |
K. Igusa and K. E. Orr,
Links, pictures and the homology of nilpotent groups, Topology, 40 (2001), 1125-1166.
doi: 10.1016/S0040-9383(00)00002-1. |
[24] |
K. Igusa, K. Orr, G. Todorov and J. Weyman,
Cluster complexes via semi-invariants, Compos. Math., 145 (2009), 1001-1034.
doi: 10.1112/S0010437X09004151. |
[25] |
▬▬▬▬▬, Modulated semi-invariants, preprint, arXiv: 1507.03051. Google Scholar |
[26] |
K. Igusa and G. Todorov, Signed exceptional sequences and the cluster morphism category, preprint, arXiv: 1706.02041. Google Scholar |
[27] |
K. Igusa, G. Todorov and J. Weyman, Picture groups of finite type and cohomology in type $A_n$, preprint, arXiv: 1609.02636. Google Scholar |
[28] |
B. Keller, On cluster theory and quantum dilogarithm identities, in Representations of Algebras and Related Topics, pages 85-116. European Mathematical Society Zürich, 2011.
doi: 10.4171/101-1/3. |
[29] |
A. D. King,
Moduli of representations of finite dimensional algebras, Quart. J. Math. Oxford Ser., 45 (1994), 515-530.
doi: 10.1093/qmath/45.4.515. |
[30] |
M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, preprint, arXiv: 0811.2435, 2008. Google Scholar |
[31] |
M. Kontsevich and Y. Soibelman, Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants, Commun. Number Theory Phys., 5 (2011), 231-352.
doi: 10.4310/CNTP. 2011. v5. n2. a1. |
[32] |
J. -L. Loday, Homotopical syzygies, Contemporary Math., 265 (2000), 99-127.
doi: 10.1090/conm/265/04245. |
[33] |
R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer-Verlag, Berlin-New York, 1977, reprinted in "Classics in Mathematics" series, Springer-Verlag, Berlin, 2001.
doi: 10.1007/978-3-642-61896-3. |
[34] |
R. Peiffer, Über Identitäten zwischen Relationen, Math. Ann., 121 (1949/1950), 67-99.
doi: 10.1007/BF01329617. |
[35] |
M. Reineke, The Harder-Narasimhan system in quantum groups and cohomology of quiver moduli, Invent. Math., 152 (2003), 349-368.
doi: 10.1007/s00222-002-0273-4. |
[36] |
C. M. Ringel, The braid group action on the set of exceptional sequences of a hereditary Artin algebra, Contemp. Math., 171 (1994), 339-352. |
[37] |
J. B. Wagoner, A picture description of the boundary map in algebraic $K$-theory, Algebraic $K$-Theory, Lecture Notes in Math., Springer, Berlin, Heidelberg, 966 (1982), 362-389. |
show all references
References:
[1] |
T. Adachi, O. Iyama and I. Reiten,
$\tau$-tilting theory, Compos. Math., 150 (2014), 415-452.
doi: 10.1112/S0010437X13007422. |
[2] |
C. Amiot,
Cluster categories for algebras of global dimension 2 and quivers with potential, Ann. Inst. Fourier (Grenoble), 59 (2009), 2525-2590.
doi: 10.5802/aif.2499. |
[3] |
T. Bridgeland,
Stability conditions on triangulated categories, Ann. of Math., 166 (2007), 317-345.
doi: 10.4007/annals.2007.166.317. |
[4] |
T. Brüstle, G. Dupont and M. Pérotin,
On maximal green sequences, Int. Math. Res. Not. IMRN, 2014 (2014), 4547-4586.
doi: 10.1093/imrn/rnt075. |
[5] |
T. Brüstle, S. Hermes, K. Igusa and G. Todorov, Semi-invariant pictures and two conjectures on maximal green sequences, J. Algebra, 473 (2017), 80-109.
doi: 10.1016/j. jalgebra. 2016.10.025. |
[6] |
T. Brüstle, D. Smith and H. Treffinger, Wall and chamber structure for finite-dimensional algebras, Adv. Math., 354 (2019), 106746, 31 pp.
doi: 10.1016/j. aim. 2019.106746. |
[7] |
A. B. Buan, R. J. Marsh and I. Reiten, Cluster-tilted algebras, Trans. Amer. Math. Soc., 359 (2007), 323-332.
doi: 10.1090/S0002-9947-06-03879-7. |
[8] |
A. B. Buan, R. Marsh, M. Reineke, I. Reiten and G. Todorov,
Tilting theory and cluster combinatorics, Adv. Math., 204 (2006), 572-618.
doi: 10.1016/j.aim.2005.06.003. |
[9] |
W. Crawley-Boevey, Exceptional sequences of representations of quivers, Representations of Algebras, (Ottawa, ON, 1992) 14 (1993), 117-124. |
[10] |
H. Derksen and J. Weyman,
Semi-invariants of quivers and saturation for Littlewood-Richardson coefficients, J. Amer. Math. Soc., 13 (2000), 467-479.
doi: 10.1090/S0894-0347-00-00331-3. |
[11] |
H. Derksen, J. Weyman and A. Zelevinsky, Quivers with potentials and their representations I: Mutations, Selecta Math., 14 (2008), 59-119.
doi: 10.1007/s00029-008-0057-9. |
[12] |
H. Derksen, J. Weyman and A. Zelevinsky,
Quivers with potentials and their representations II: Applications to cluster algebras, J. Amer. Math. Soc., 23 (2010), 749-790.
doi: 10.1090/S0894-0347-10-00662-4. |
[13] |
S. Fomin and A. Zelevinsky,
Cluster algebras I: Foundations, J. Amer. Math. Soc., 15 (2002), 497-529.
doi: 10.1090/S0894-0347-01-00385-X. |
[14] |
S. Fomin and A. Zelevinsky,
Cluster algebras II: Finite type classification, Invent. Math., 154 (2003), 63-121.
doi: 10.1007/s00222-003-0302-y. |
[15] |
S. M. Gersten,
$K\sb{3}$ of a ring is $H\sb{3}$ of the Steinberg group, Proc. Amer. Math. Soc., 37 (1973), 366-368.
doi: 10.2307/2039440. |
[16] |
A. Hatcher and J. Wagoner, Pseudo-Isotopies of Compact Manifolds, Société mathématique de France, 1973. |
[17] |
K. Igusa, The $Wh_3(\pi)$ Obstruction for Pseudoisotopy, PhD thesis, Princeton University, 1979. |
[18] |
▬▬▬▬▬, The Borel regulator map on pictures, I: A dilogarithm formula, K-Theory, 7, (1993). Google Scholar |
[19] |
▬▬▬▬▬, The category of noncrossing partitions, preprint, arXiv: 1411.0196. Google Scholar |
[20] |
▬▬▬▬▬, Linearity of stability conditions, Communications in Algebra, (2020), 1-26. Google Scholar |
[21] |
K. Igusa, Maximal green sequences for cluster-tilted algebras of finite representation type, Algebr. Comb., 2 (2019), 753-780.
doi: 10.5802/alco. 61. |
[22] |
K. Igusa and J. Klein,
The Borel regulator map on pictures. II. An example from Morse theory, $K$-Theory, 7 (1993), 225-267.
doi: 10.1007/BF00961065. |
[23] |
K. Igusa and K. E. Orr,
Links, pictures and the homology of nilpotent groups, Topology, 40 (2001), 1125-1166.
doi: 10.1016/S0040-9383(00)00002-1. |
[24] |
K. Igusa, K. Orr, G. Todorov and J. Weyman,
Cluster complexes via semi-invariants, Compos. Math., 145 (2009), 1001-1034.
doi: 10.1112/S0010437X09004151. |
[25] |
▬▬▬▬▬, Modulated semi-invariants, preprint, arXiv: 1507.03051. Google Scholar |
[26] |
K. Igusa and G. Todorov, Signed exceptional sequences and the cluster morphism category, preprint, arXiv: 1706.02041. Google Scholar |
[27] |
K. Igusa, G. Todorov and J. Weyman, Picture groups of finite type and cohomology in type $A_n$, preprint, arXiv: 1609.02636. Google Scholar |
[28] |
B. Keller, On cluster theory and quantum dilogarithm identities, in Representations of Algebras and Related Topics, pages 85-116. European Mathematical Society Zürich, 2011.
doi: 10.4171/101-1/3. |
[29] |
A. D. King,
Moduli of representations of finite dimensional algebras, Quart. J. Math. Oxford Ser., 45 (1994), 515-530.
doi: 10.1093/qmath/45.4.515. |
[30] |
M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, preprint, arXiv: 0811.2435, 2008. Google Scholar |
[31] |
M. Kontsevich and Y. Soibelman, Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants, Commun. Number Theory Phys., 5 (2011), 231-352.
doi: 10.4310/CNTP. 2011. v5. n2. a1. |
[32] |
J. -L. Loday, Homotopical syzygies, Contemporary Math., 265 (2000), 99-127.
doi: 10.1090/conm/265/04245. |
[33] |
R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer-Verlag, Berlin-New York, 1977, reprinted in "Classics in Mathematics" series, Springer-Verlag, Berlin, 2001.
doi: 10.1007/978-3-642-61896-3. |
[34] |
R. Peiffer, Über Identitäten zwischen Relationen, Math. Ann., 121 (1949/1950), 67-99.
doi: 10.1007/BF01329617. |
[35] |
M. Reineke, The Harder-Narasimhan system in quantum groups and cohomology of quiver moduli, Invent. Math., 152 (2003), 349-368.
doi: 10.1007/s00222-002-0273-4. |
[36] |
C. M. Ringel, The braid group action on the set of exceptional sequences of a hereditary Artin algebra, Contemp. Math., 171 (1994), 339-352. |
[37] |
J. B. Wagoner, A picture description of the boundary map in algebraic $K$-theory, Algebraic $K$-Theory, Lecture Notes in Math., Springer, Berlin, Heidelberg, 966 (1982), 362-389. |












[1] |
Kurt Vinhage. On the rigidity of Weyl chamber flows and Schur multipliers as topological groups. Journal of Modern Dynamics, 2015, 9: 25-49. doi: 10.3934/jmd.2015.9.25 |
[2] |
Antonio Garijo, Xavier Jarque. The secant map applied to a real polynomial with multiple roots. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6783-6794. doi: 10.3934/dcds.2020133 |
[3] |
Chun-Gil Park. Stability of a linear functional equation in Banach modules. Conference Publications, 2003, 2003 (Special) : 694-700. doi: 10.3934/proc.2003.2003.694 |
[4] |
Florian Monteghetti, Ghislain Haine, Denis Matignon. Asymptotic stability of the multidimensional wave equation coupled with classes of positive-real impedance boundary conditions. Mathematical Control & Related Fields, 2019, 9 (4) : 759-791. doi: 10.3934/mcrf.2019049 |
[5] |
Hong Zhang, Fei Yang. Optimization of capital structure in real estate enterprises. Journal of Industrial & Management Optimization, 2015, 11 (3) : 969-983. doi: 10.3934/jimo.2015.11.969 |
[6] |
Frederic Rousset. The residual boundary conditions coming from the real vanishing viscosity method. Discrete & Continuous Dynamical Systems, 2002, 8 (3) : 605-625. doi: 10.3934/dcds.2002.8.606 |
[7] |
Stephen Doty and Anthony Giaquinto. Generators and relations for Schur algebras. Electronic Research Announcements, 2001, 7: 54-62. |
[8] |
Michael Herrmann, Alice Mikikits-Leitner. KdV waves in atomic chains with nonlocal interactions. Discrete & Continuous Dynamical Systems, 2016, 36 (4) : 2047-2067. doi: 10.3934/dcds.2016.36.2047 |
[9] |
Roberto Triggiani. Stability enhancement of a 2-D linear Navier-Stokes channel flow by a 2-D, wall-normal boundary controller. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 279-314. doi: 10.3934/dcdsb.2007.8.279 |
[10] |
Daniele Boffi, Lucia Gastaldi. Discrete models for fluid-structure interactions: The finite element Immersed Boundary Method. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 89-107. doi: 10.3934/dcdss.2016.9.89 |
[11] |
Salim Meddahi, David Mora. Nonconforming mixed finite element approximation of a fluid-structure interaction spectral problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 269-287. doi: 10.3934/dcdss.2016.9.269 |
[12] |
Tian Ma, Shouhong Wang. Structure of 2D incompressible flows with the Dirichlet boundary conditions. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 29-41. doi: 10.3934/dcdsb.2001.1.29 |
[13] |
Yanqiong Lu, Ruyun Ma. Disconjugacy conditions and spectrum structure of clamped beam equations with two parameters. Communications on Pure & Applied Analysis, 2020, 19 (6) : 3283-3302. doi: 10.3934/cpaa.2020145 |
[14] |
Daniel Bernazzani. Most interval exchanges have no roots. Journal of Modern Dynamics, 2017, 11: 249-262. doi: 10.3934/jmd.2017011 |
[15] |
Liu Liu, Weinian Zhang. Genetics of iterative roots for PM functions. Discrete & Continuous Dynamical Systems, 2021, 41 (5) : 2391-2409. doi: 10.3934/dcds.2020369 |
[16] |
Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic & Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639 |
[17] |
Hichem Kasri, Amar Heminna. Exponential stability of a coupled system with Wentzell conditions. Evolution Equations & Control Theory, 2016, 5 (2) : 235-250. doi: 10.3934/eect.2016003 |
[18] |
George Avalos, Roberto Triggiani. Fluid-structure interaction with and without internal dissipation of the structure: A contrast study in stability. Evolution Equations & Control Theory, 2013, 2 (4) : 563-598. doi: 10.3934/eect.2013.2.563 |
[19] |
Xing Wang, Nan-Jing Huang. Stability analysis for set-valued vector mixed variational inequalities in real reflexive Banach spaces. Journal of Industrial & Management Optimization, 2013, 9 (1) : 57-74. doi: 10.3934/jimo.2013.9.57 |
[20] |
C. Burgos, J.-C. Cortés, L. Shaikhet, R.-J. Villanueva. A delayed nonlinear stochastic model for cocaine consumption: Stability analysis and simulation using real data. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1233-1244. doi: 10.3934/dcdss.2020356 |
Impact Factor: 0.263
Tools
Metrics
Other articles
by authors
[Back to Top]