doi: 10.3934/era.2021025

Picture groups and maximal green sequences

1. 

Brandeis University, MS050, 415 South St, Waltham, MA 02454-9110, USA

2. 

Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA

* Corresponding author: Kiyoshi Igusa

Received  July 2020 Revised  February 2021 Published  March 2021

Fund Project: The first author is supported by the Simons Foundation

We show that picture groups are directly related to maximal green sequences for valued Dynkin quivers of finite type. Namely, there is a bijection between maximal green sequences and positive expressions (words in the generators without inverses) for the Coxeter element of the picture group. We actually prove the theorem for the more general set up of finite "vertically and laterally ordered" sets of positive real Schur roots for any hereditary algebra (not necessarily of finite type).

Furthermore, we show that every picture for such a set of positive roots is a linear combination of "atoms" and we give a precise description of atoms as special semi-invariant pictures.

Citation: Kiyoshi Igusa, Gordana Todorov. Picture groups and maximal green sequences. Electronic Research Archive, doi: 10.3934/era.2021025
References:
[1]

T. AdachiO. Iyama and I. Reiten, $\tau$-tilting theory, Compos. Math., 150 (2014), 415-452.  doi: 10.1112/S0010437X13007422.  Google Scholar

[2]

C. Amiot, Cluster categories for algebras of global dimension 2 and quivers with potential, Ann. Inst. Fourier (Grenoble), 59 (2009), 2525-2590.  doi: 10.5802/aif.2499.  Google Scholar

[3]

T. Bridgeland, Stability conditions on triangulated categories, Ann. of Math., 166 (2007), 317-345.  doi: 10.4007/annals.2007.166.317.  Google Scholar

[4]

T. BrüstleG. Dupont and M. Pérotin, On maximal green sequences, Int. Math. Res. Not. IMRN, 2014 (2014), 4547-4586.  doi: 10.1093/imrn/rnt075.  Google Scholar

[5]

T. Brüstle, S. Hermes, K. Igusa and G. Todorov, Semi-invariant pictures and two conjectures on maximal green sequences, J. Algebra, 473 (2017), 80-109. doi: 10.1016/j. jalgebra. 2016.10.025.  Google Scholar

[6]

T. Brüstle, D. Smith and H. Treffinger, Wall and chamber structure for finite-dimensional algebras, Adv. Math., 354 (2019), 106746, 31 pp. doi: 10.1016/j. aim. 2019.106746.  Google Scholar

[7]

A. B. Buan, R. J. Marsh and I. Reiten, Cluster-tilted algebras, Trans. Amer. Math. Soc., 359 (2007), 323-332. doi: 10.1090/S0002-9947-06-03879-7.  Google Scholar

[8]

A. B. BuanR. MarshM. ReinekeI. Reiten and G. Todorov, Tilting theory and cluster combinatorics, Adv. Math., 204 (2006), 572-618.  doi: 10.1016/j.aim.2005.06.003.  Google Scholar

[9]

W. Crawley-Boevey, Exceptional sequences of representations of quivers, Representations of Algebras, (Ottawa, ON, 1992) 14 (1993), 117-124.  Google Scholar

[10]

H. Derksen and J. Weyman, Semi-invariants of quivers and saturation for Littlewood-Richardson coefficients, J. Amer. Math. Soc., 13 (2000), 467-479.  doi: 10.1090/S0894-0347-00-00331-3.  Google Scholar

[11]

H. Derksen, J. Weyman and A. Zelevinsky, Quivers with potentials and their representations I: Mutations, Selecta Math., 14 (2008), 59-119. doi: 10.1007/s00029-008-0057-9.  Google Scholar

[12]

H. DerksenJ. Weyman and A. Zelevinsky, Quivers with potentials and their representations II: Applications to cluster algebras, J. Amer. Math. Soc., 23 (2010), 749-790.  doi: 10.1090/S0894-0347-10-00662-4.  Google Scholar

[13]

S. Fomin and A. Zelevinsky, Cluster algebras I: Foundations, J. Amer. Math. Soc., 15 (2002), 497-529.  doi: 10.1090/S0894-0347-01-00385-X.  Google Scholar

[14]

S. Fomin and A. Zelevinsky, Cluster algebras II: Finite type classification, Invent. Math., 154 (2003), 63-121.  doi: 10.1007/s00222-003-0302-y.  Google Scholar

[15]

S. M. Gersten, $K\sb{3}$ of a ring is $H\sb{3}$ of the Steinberg group, Proc. Amer. Math. Soc., 37 (1973), 366-368.  doi: 10.2307/2039440.  Google Scholar

[16]

A. Hatcher and J. Wagoner, Pseudo-Isotopies of Compact Manifolds, Société mathématique de France, 1973.  Google Scholar

[17]

K. Igusa, The $Wh_3(\pi)$ Obstruction for Pseudoisotopy, PhD thesis, Princeton University, 1979.  Google Scholar

[18]

▬▬▬▬▬, The Borel regulator map on pictures, I: A dilogarithm formula, K-Theory, 7, (1993). Google Scholar

[19]

▬▬▬▬▬, The category of noncrossing partitions, preprint, arXiv: 1411.0196. Google Scholar

[20]

▬▬▬▬▬, Linearity of stability conditions, Communications in Algebra, (2020), 1-26. Google Scholar

[21]

K. Igusa, Maximal green sequences for cluster-tilted algebras of finite representation type, Algebr. Comb., 2 (2019), 753-780. doi: 10.5802/alco. 61.  Google Scholar

[22]

K. Igusa and J. Klein, The Borel regulator map on pictures. II. An example from Morse theory, $K$-Theory, 7 (1993), 225-267.  doi: 10.1007/BF00961065.  Google Scholar

[23]

K. Igusa and K. E. Orr, Links, pictures and the homology of nilpotent groups, Topology, 40 (2001), 1125-1166.  doi: 10.1016/S0040-9383(00)00002-1.  Google Scholar

[24]

K. IgusaK. OrrG. Todorov and J. Weyman, Cluster complexes via semi-invariants, Compos. Math., 145 (2009), 1001-1034.  doi: 10.1112/S0010437X09004151.  Google Scholar

[25]

▬▬▬▬▬, Modulated semi-invariants, preprint, arXiv: 1507.03051. Google Scholar

[26]

K. Igusa and G. Todorov, Signed exceptional sequences and the cluster morphism category, preprint, arXiv: 1706.02041. Google Scholar

[27]

K. Igusa, G. Todorov and J. Weyman, Picture groups of finite type and cohomology in type $A_n$, preprint, arXiv: 1609.02636. Google Scholar

[28]

B. Keller, On cluster theory and quantum dilogarithm identities, in Representations of Algebras and Related Topics, pages 85-116. European Mathematical Society Zürich, 2011. doi: 10.4171/101-1/3.  Google Scholar

[29]

A. D. King, Moduli of representations of finite dimensional algebras, Quart. J. Math. Oxford Ser., 45 (1994), 515-530.  doi: 10.1093/qmath/45.4.515.  Google Scholar

[30]

M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, preprint, arXiv: 0811.2435, 2008. Google Scholar

[31]

M. Kontsevich and Y. Soibelman, Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants, Commun. Number Theory Phys., 5 (2011), 231-352. doi: 10.4310/CNTP. 2011. v5. n2. a1.  Google Scholar

[32]

J. -L. Loday, Homotopical syzygies, Contemporary Math., 265 (2000), 99-127. doi: 10.1090/conm/265/04245.  Google Scholar

[33]

R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer-Verlag, Berlin-New York, 1977, reprinted in "Classics in Mathematics" series, Springer-Verlag, Berlin, 2001. doi: 10.1007/978-3-642-61896-3.  Google Scholar

[34]

R. Peiffer, Über Identitäten zwischen Relationen, Math. Ann., 121 (1949/1950), 67-99. doi: 10.1007/BF01329617.  Google Scholar

[35]

M. Reineke, The Harder-Narasimhan system in quantum groups and cohomology of quiver moduli, Invent. Math., 152 (2003), 349-368. doi: 10.1007/s00222-002-0273-4.  Google Scholar

[36]

C. M. Ringel, The braid group action on the set of exceptional sequences of a hereditary Artin algebra, Contemp. Math., 171 (1994), 339-352.  Google Scholar

[37]

J. B. Wagoner, A picture description of the boundary map in algebraic $K$-theory, Algebraic $K$-Theory, Lecture Notes in Math., Springer, Berlin, Heidelberg, 966 (1982), 362-389.  Google Scholar

show all references

References:
[1]

T. AdachiO. Iyama and I. Reiten, $\tau$-tilting theory, Compos. Math., 150 (2014), 415-452.  doi: 10.1112/S0010437X13007422.  Google Scholar

[2]

C. Amiot, Cluster categories for algebras of global dimension 2 and quivers with potential, Ann. Inst. Fourier (Grenoble), 59 (2009), 2525-2590.  doi: 10.5802/aif.2499.  Google Scholar

[3]

T. Bridgeland, Stability conditions on triangulated categories, Ann. of Math., 166 (2007), 317-345.  doi: 10.4007/annals.2007.166.317.  Google Scholar

[4]

T. BrüstleG. Dupont and M. Pérotin, On maximal green sequences, Int. Math. Res. Not. IMRN, 2014 (2014), 4547-4586.  doi: 10.1093/imrn/rnt075.  Google Scholar

[5]

T. Brüstle, S. Hermes, K. Igusa and G. Todorov, Semi-invariant pictures and two conjectures on maximal green sequences, J. Algebra, 473 (2017), 80-109. doi: 10.1016/j. jalgebra. 2016.10.025.  Google Scholar

[6]

T. Brüstle, D. Smith and H. Treffinger, Wall and chamber structure for finite-dimensional algebras, Adv. Math., 354 (2019), 106746, 31 pp. doi: 10.1016/j. aim. 2019.106746.  Google Scholar

[7]

A. B. Buan, R. J. Marsh and I. Reiten, Cluster-tilted algebras, Trans. Amer. Math. Soc., 359 (2007), 323-332. doi: 10.1090/S0002-9947-06-03879-7.  Google Scholar

[8]

A. B. BuanR. MarshM. ReinekeI. Reiten and G. Todorov, Tilting theory and cluster combinatorics, Adv. Math., 204 (2006), 572-618.  doi: 10.1016/j.aim.2005.06.003.  Google Scholar

[9]

W. Crawley-Boevey, Exceptional sequences of representations of quivers, Representations of Algebras, (Ottawa, ON, 1992) 14 (1993), 117-124.  Google Scholar

[10]

H. Derksen and J. Weyman, Semi-invariants of quivers and saturation for Littlewood-Richardson coefficients, J. Amer. Math. Soc., 13 (2000), 467-479.  doi: 10.1090/S0894-0347-00-00331-3.  Google Scholar

[11]

H. Derksen, J. Weyman and A. Zelevinsky, Quivers with potentials and their representations I: Mutations, Selecta Math., 14 (2008), 59-119. doi: 10.1007/s00029-008-0057-9.  Google Scholar

[12]

H. DerksenJ. Weyman and A. Zelevinsky, Quivers with potentials and their representations II: Applications to cluster algebras, J. Amer. Math. Soc., 23 (2010), 749-790.  doi: 10.1090/S0894-0347-10-00662-4.  Google Scholar

[13]

S. Fomin and A. Zelevinsky, Cluster algebras I: Foundations, J. Amer. Math. Soc., 15 (2002), 497-529.  doi: 10.1090/S0894-0347-01-00385-X.  Google Scholar

[14]

S. Fomin and A. Zelevinsky, Cluster algebras II: Finite type classification, Invent. Math., 154 (2003), 63-121.  doi: 10.1007/s00222-003-0302-y.  Google Scholar

[15]

S. M. Gersten, $K\sb{3}$ of a ring is $H\sb{3}$ of the Steinberg group, Proc. Amer. Math. Soc., 37 (1973), 366-368.  doi: 10.2307/2039440.  Google Scholar

[16]

A. Hatcher and J. Wagoner, Pseudo-Isotopies of Compact Manifolds, Société mathématique de France, 1973.  Google Scholar

[17]

K. Igusa, The $Wh_3(\pi)$ Obstruction for Pseudoisotopy, PhD thesis, Princeton University, 1979.  Google Scholar

[18]

▬▬▬▬▬, The Borel regulator map on pictures, I: A dilogarithm formula, K-Theory, 7, (1993). Google Scholar

[19]

▬▬▬▬▬, The category of noncrossing partitions, preprint, arXiv: 1411.0196. Google Scholar

[20]

▬▬▬▬▬, Linearity of stability conditions, Communications in Algebra, (2020), 1-26. Google Scholar

[21]

K. Igusa, Maximal green sequences for cluster-tilted algebras of finite representation type, Algebr. Comb., 2 (2019), 753-780. doi: 10.5802/alco. 61.  Google Scholar

[22]

K. Igusa and J. Klein, The Borel regulator map on pictures. II. An example from Morse theory, $K$-Theory, 7 (1993), 225-267.  doi: 10.1007/BF00961065.  Google Scholar

[23]

K. Igusa and K. E. Orr, Links, pictures and the homology of nilpotent groups, Topology, 40 (2001), 1125-1166.  doi: 10.1016/S0040-9383(00)00002-1.  Google Scholar

[24]

K. IgusaK. OrrG. Todorov and J. Weyman, Cluster complexes via semi-invariants, Compos. Math., 145 (2009), 1001-1034.  doi: 10.1112/S0010437X09004151.  Google Scholar

[25]

▬▬▬▬▬, Modulated semi-invariants, preprint, arXiv: 1507.03051. Google Scholar

[26]

K. Igusa and G. Todorov, Signed exceptional sequences and the cluster morphism category, preprint, arXiv: 1706.02041. Google Scholar

[27]

K. Igusa, G. Todorov and J. Weyman, Picture groups of finite type and cohomology in type $A_n$, preprint, arXiv: 1609.02636. Google Scholar

[28]

B. Keller, On cluster theory and quantum dilogarithm identities, in Representations of Algebras and Related Topics, pages 85-116. European Mathematical Society Zürich, 2011. doi: 10.4171/101-1/3.  Google Scholar

[29]

A. D. King, Moduli of representations of finite dimensional algebras, Quart. J. Math. Oxford Ser., 45 (1994), 515-530.  doi: 10.1093/qmath/45.4.515.  Google Scholar

[30]

M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, preprint, arXiv: 0811.2435, 2008. Google Scholar

[31]

M. Kontsevich and Y. Soibelman, Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants, Commun. Number Theory Phys., 5 (2011), 231-352. doi: 10.4310/CNTP. 2011. v5. n2. a1.  Google Scholar

[32]

J. -L. Loday, Homotopical syzygies, Contemporary Math., 265 (2000), 99-127. doi: 10.1090/conm/265/04245.  Google Scholar

[33]

R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer-Verlag, Berlin-New York, 1977, reprinted in "Classics in Mathematics" series, Springer-Verlag, Berlin, 2001. doi: 10.1007/978-3-642-61896-3.  Google Scholar

[34]

R. Peiffer, Über Identitäten zwischen Relationen, Math. Ann., 121 (1949/1950), 67-99. doi: 10.1007/BF01329617.  Google Scholar

[35]

M. Reineke, The Harder-Narasimhan system in quantum groups and cohomology of quiver moduli, Invent. Math., 152 (2003), 349-368. doi: 10.1007/s00222-002-0273-4.  Google Scholar

[36]

C. M. Ringel, The braid group action on the set of exceptional sequences of a hereditary Artin algebra, Contemp. Math., 171 (1994), 339-352.  Google Scholar

[37]

J. B. Wagoner, A picture description of the boundary map in algebraic $K$-theory, Algebraic $K$-Theory, Lecture Notes in Math., Springer, Berlin, Heidelberg, 966 (1982), 362-389.  Google Scholar

Figure 1.  On the left is the semi-invariant picture $ L(\mathcal{S}_0) $ for the admissible subsequences $ \mathcal{S}_0 = (\alpha_1,\alpha_2,\alpha_4) $ of $ \mathcal{S} $ from Example 1.13. $ L(\mathcal{S}_0) $ is a subset of $ S^2\subset\mathbb{R}^3 $. Thus, e.g., $ D(\alpha_i) $ are actually coordinate hyperplanes. The $ \mathcal{S}_0 $-compartments are the components of the complement of $ L(\mathcal{S}_0) $. For example, $ \mathcal{U}_{++0} = \mathcal{U}_{++} $ is the region on the positive side of the two hyperplanes $ D(\alpha_1),D(\alpha_2) $. $ \mathcal{U}_{-++} $ is the set of point in $ \mathcal{U}_{-+} $ on the positive side of $ D(\alpha_4) $. On the right, the wall $ D(\alpha_3) $ cuts all five $ \mathcal{S}_0 $-compartments in half giving the semi-invariant picture for $ \mathcal{S} = (\alpha_1,\alpha_2,\alpha_4,\alpha_3) $ with ten compartments
$ \mathcal{S}' $ is only weakly admissible. Also, $ L(\mathcal{S}') $ is not a "planar picture" for $ G(\mathcal{S}') $ as defined in Section 3 since $ \mathcal{S}' $ is not admissible">Figure 2.  Semi-invariant picture $ L(\mathcal{S}') $ for the weakly admissible sequence $ \mathcal{S}' = (\alpha_1,\alpha_4,\alpha_3) $ from Example 1.13. The solid green arrow indicates an $ \mathcal{S}' $-green path giving the maximal $ \mathcal{S}' $-green sequence $ \mathcal{U}_{---},\mathcal{U}_{+0-},\mathcal{U}_{+0+} $. Note that the dashed green arrow indicates another $ \mathcal{S}' $-green path giving the maximal $ \mathcal{S}' $-green sequence $ \mathcal{U}_{---}, \mathcal{U}_{-+-} $, $ \mathcal{U}_{+0-}, \mathcal{U}_{+0+} $. So, "maximal" is a misnomer when $ \mathcal{S}' $ is only weakly admissible. Also, $ L(\mathcal{S}') $ is not a "planar picture" for $ G(\mathcal{S}') $ as defined in Section 3 since $ \mathcal{S}' $ is not admissible
Figure 3.  A typical intersection of two walls $ D(\alpha_1) $ and $ D(\alpha_2) $ producing walls $ D(\beta_i) $. In this drawing there is only $ \beta = \alpha_1+\alpha_2 $. The green path $ \gamma $ crosses $ D(\alpha_1),D(\alpha_2) $ and $ \gamma' $ crosses $ D(\alpha_2),D(\beta),D(\alpha_1) $. The homotopy $ h:\gamma\simeq\gamma' $ passes through $ x_0 $
Figure 4.  The green path $ \gamma_1 $ is in Class 1 since it is disjoint from $ D(\beta_m) $. The green path $ \gamma_2 $ is in Class 2 and passes through three $ \mathcal{S}_0 $-compartments $ \mathcal{U}_{\epsilon(p)},\mathcal{U}_{\epsilon(r)},\mathcal{U}_{\epsilon(q)} $ in $ \mathcal{V}_0 = int(\mathcal{V}(\beta_m)\backslash\mathcal{W}(\beta_m)) $. Each of these is divided into two $ \mathcal{S} $-compartments by the wall $ D(\beta_m) $ and $ \gamma_2 $ passes through four of these $ \mathcal{S} $-compartments in $ \mathcal{V}_0 $. $ D(\beta_m) $ is the part of the hyperplane $ H(\beta_m) $ inside the oval region $ \mathcal{V}(\beta_m) $ and outside of $ \mathcal{W}(\beta_m) $
Figure 5.  The cone of $ E_r $ in $ D^2 $ is the part inside the circle $ S^1 $. The asterisks $ \ast $ indicates the position of the basepoint $ 1\in S^1 $. The labels are drawn on the negative side of each edge
$ r_1 = x^{-1}y^{-1}z $ and $ r_2 $ are relations (or inverse relations). $ L_1 $ is the "standard partial picture" for $ q(L_1) = (ab,r_1)(c,r_2)\in Q(G) $. On the right is $ L_2 $, a deformation of $ L_1 $ with $ \partial L_2 = cc^{-1}\partial L_1 $. $ q(L_2) = (c,r_2)(cr_2^{-1}c^{-1}ab,r_1) $ since the vertex for $ r_2 $ is on the left and $ cr_2^{-1}c^{-1}ab $ is given by reading the labels on the dotted path $ \ell_1' $. Then $ q(L_1) = q(L_2) $ by (4).">Figure 6.  On the left, $ L_1 $ is a partial picture with $ \partial L_1 = abr_1b^{-1}a^{-1}cr_2c^{-1} $ where $ r_1 = x^{-1}y^{-1}z $ and $ r_2 $ are relations (or inverse relations). $ L_1 $ is the "standard partial picture" for $ q(L_1) = (ab,r_1)(c,r_2)\in Q(G) $. On the right is $ L_2 $, a deformation of $ L_1 $ with $ \partial L_2 = cc^{-1}\partial L_1 $. $ q(L_2) = (c,r_2)(cr_2^{-1}c^{-1}ab,r_1) $ since the vertex for $ r_2 $ is on the left and $ cr_2^{-1}c^{-1}ab $ is given by reading the labels on the dotted path $ \ell_1' $. Then $ q(L_1) = q(L_2) $ by (4).
Figure 7.  Dotted lines $ \ell_1,\ell_2 $ are given by definition of $ q(L_2) $. Take dashed lines parallel to $ \ell_1,\ell_2 $ and connected with small semicircles below vertices $ v_1,v_2 $. Push the dashed line down to the $ x $-axis. This gives an admissible deformation of $ L_2 $ (on the left) to $ L_{q(L_2)} $ (on the night). The dotted lines $ \ell_1,\ell_2 $ cross the same edges in both partial pictures
Figure 8.  The X-letters $ a,b $ have edge sets which are smooth at the vertex. The basepoint direction is on the negative side of both X-edges $ E(a),E(b) $
Figure 9.  The atom $A_\mathcal{A}(\alpha, \beta, \omega)$. There are three circles labeled $\alpha, \beta, \omega$. There is only one vertex (black dot) outside the brown circle labeled $\omega$. There is only one vertex inside the $\alpha$ circle. The faint gray line is deleted since, in this example, its label is not in the set $\mathcal{S}$
, in the middle, and $ L' = \rho(L_0)\cup L_1 $ on the right. The $ E(\omega) $ component $ \Sigma $ lies either in $ L' $ or $ L" $. (Here it is in $ L" $ in the middle.) In either case, it can be removed by the Sliding Lemma 3.17">Figure 11.  Illustrating proof of Atomic Deformation Theorem 3.18: $ \Sigma' $ (in red) is on the negative side of an innermost $ E(\omega) $ curve $ \Sigma $ (in blue). The picture $ L = L_0\cup L_1 $, on the left, is deformation equivalent to the disjoint union of two pictures: $ L" = L_0\cup \rho(L_0') $, in the middle, and $ L' = \rho(L_0)\cup L_1 $ on the right. The $ E(\omega) $ component $ \Sigma $ lies either in $ L' $ or $ L" $. (Here it is in $ L" $ in the middle.) In either case, it can be removed by the Sliding Lemma 3.17
Figure 10.  Illustrating proof of Sliding Lemma 3.17: $ \Sigma $ in blue is a disjoint union of $ E(\omega) $ closed curves which encloses a region $ \overline U = \Sigma\cup U $. All Y-edges for vertices on $ \Sigma $ lie outside $ U $. The atom $ \mathcal{A}(\alpha,\beta,\omega) $ in the proof has already been added on the left. The new region $ U' $ is the complement of the new $ \omega $ oval in $ U $. The vertex $ v $ has been cancelled with the vertex in the atom on the right
Figure 12.  (Proof of Lemma E) The partial picture $ L $ for $ G(\mathcal{S}_-(\lambda)) $ is divided into two parts $ L = L_0\cup L_1 $ by $ \Sigma' $. Applying $ \rho:G(\mathcal{S}_-(\lambda))\to G(\mathcal{R}_-(\lambda)) $ to $ L_0 $ eliminates $ x(\lambda) $ from the word $ w_0 = w_1x(\lambda)x_2 $ but does not eliminage $ x(\beta_m) $. Then $ w_1\rho(w_2) $ commutes with $ x(\beta_m) $ contradicting the minimality of $ w_0 $
[1]

Stephen Doty and Anthony Giaquinto. Generators and relations for Schur algebras. Electronic Research Announcements, 2001, 7: 54-62.

[2]

Jihoon Lee, Nguyen Thanh Nguyen. Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1263-1296. doi: 10.3934/cpaa.2021020

[3]

Frank Sottile. The special Schubert calculus is real. Electronic Research Announcements, 1999, 5: 35-39.

[4]

Ágota P. Horváth. Discrete diffusion semigroups associated with Jacobi-Dunkl and exceptional Jacobi polynomials. Communications on Pure & Applied Analysis, 2021, 20 (3) : 975-994. doi: 10.3934/cpaa.2021002

[5]

Peng Zhang, Yongquan Zeng, Guotai Chi. Time-consistent multiperiod mean semivariance portfolio selection with the real constraints. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1663-1680. doi: 10.3934/jimo.2020039

[6]

Yusi Fan, Chenrui Yao, Liangyun Chen. Structure of sympathetic Lie superalgebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2021020

[7]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[8]

Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222

[9]

Derrick Jones, Xu Zhang. A conforming-nonconforming mixed immersed finite element method for unsteady Stokes equations with moving interfaces. Electronic Research Archive, , () : -. doi: 10.3934/era.2021032

[10]

Youjun Deng, Hongyu Liu, Xianchao Wang, Dong Wei, Liyan Zhu. Simultaneous recovery of surface heat flux and thickness of a solid structure by ultrasonic measurements. Electronic Research Archive, , () : -. doi: 10.3934/era.2021027

[11]

Christoforidou Amalia, Christian-Oliver Ewald. A lattice method for option evaluation with regime-switching asset correlation structure. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1729-1752. doi: 10.3934/jimo.2020042

[12]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3319-3341. doi: 10.3934/dcds.2020407

[13]

Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch. Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure. Networks & Heterogeneous Media, 2021, 16 (2) : 283-315. doi: 10.3934/nhm.2021007

[14]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[15]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[16]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[17]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[18]

Xiaofei Liu, Yong Wang. Weakening convergence conditions of a potential reduction method for tensor complementarity problems. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021080

[19]

Wei Wang, Wanbiao Ma, Xiulan Lai. Sufficient conditions for global dynamics of a viral infection model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3989-4011. doi: 10.3934/dcdsb.2020271

[20]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015

 Impact Factor: 0.263

Article outline

Figures and Tables

[Back to Top]