
-
Previous Article
Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $
- ERA Home
- This Issue
-
Next Article
Tori can't collapse to an interval
Instability and bifurcation of a cooperative system with periodic coefficients
1. | School of Mathematical Sciences University of Science and Technology of China, Hefei, Anhui 230026, China |
2. | School of Mathematical Sciences, Huaqiao University, Quanzhou, Fujian 362021, China |
In this paper, we focus on a linear cooperative system with periodic coefficients proposed by Mierczyński [SIAM Review 59(2017), 649-670]. By introducing a switching strategy parameter $ \lambda $ in the periodic coefficients, the bifurcation of instability and the optimization of the switching strategy are investigated. The critical value of unstable branches is determined by appealing to the theory of monotone dynamical system. A bifurcation diagram is presented and numerical examples are given to illustrate the effectiveness of our theoretical result.
References:
[1] |
M. Benaïm, S. Le Borgne, F. Malrieu and P.-A. Zitt,
On the stability of planar randomly switched systems, Ann. Appl. Probab, 24 (2014), 292-311.
doi: 10.1214/13-AAP924. |
[2] |
D. H. Boucher, S. James and K. H. Keeler,
The ecology of mutualism, Annual Review of Ecology and Systematics, 13 (1982), 315-347.
doi: 10.1146/annurev.es.13.110182.001531. |
[3] |
K. C. Chang, K. Pearson and T. Zhang,
Perron-Frobenius Theorem for Nonnegative Tensors, Commun. Math. Sci., 6 (2008), 507-520.
doi: 10.4310/CMS.2008.v6.n2.a12. |
[4] |
C. Chicone, Ordinary Differential Equations with Applications, 2nd edition, Springer-Verlag, New York, 2006. |
[5] |
B. S. Goh,
Stability in models of mutualism, Amer. Natur., 113 (1979), 261-275.
doi: 10.1086/283384. |
[6] |
L. Gurvits, R. Shorten and O. Mason,
On the stability of switched positive linear systems, IEEE Trans. Automat. Control, 52 (2007), 1099-1103.
doi: 10.1109/TAC.2007.899057. |
[7] |
M. W. Hirsch and H. L. Smith, Monotone dynamical systems, Handbook of Differential Equations: Ordinary Differential Equations, Vol. II, 239–357, Elsevier B. V., Amsterdam, (2005). |
[8] |
K. Josić and R. Rosenbaum,
Unstable solutions of nonautonomous linear differential equations, SIAM Review, 50 (2008), 570-584.
doi: 10.1137/060677057. |
[9] |
T. Malik and H. L. Smith,
Does dormancy increase fitness of bacterial populations in time varying environments?, Bull. Math. Biol., 70 (2008), 1140-1162.
doi: 10.1007/s11538-008-9294-5. |
[10] |
R. M. May and A. R. McLean, Theoretical Ecology: Principles and Applications, 3nd edition, Oxford, UK, 2007. |
[11] |
J. Mierczyński,
Instability in linear cooperative systems of ordinary differential equations, SIAM Review, 59 (2017), 649-670.
doi: 10.1137/141001147. |
[12] |
J. D. Murray, Mathematical Biology I: An Introduction, 3nd edition, Springer-Verlag, New York, 2002. |
[13] |
H. L. Smith, Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, 41. AMS, Providence, RI, 1995. |
[14] |
S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edition, Springer-Verlag, New York, 2003. |
show all references
References:
[1] |
M. Benaïm, S. Le Borgne, F. Malrieu and P.-A. Zitt,
On the stability of planar randomly switched systems, Ann. Appl. Probab, 24 (2014), 292-311.
doi: 10.1214/13-AAP924. |
[2] |
D. H. Boucher, S. James and K. H. Keeler,
The ecology of mutualism, Annual Review of Ecology and Systematics, 13 (1982), 315-347.
doi: 10.1146/annurev.es.13.110182.001531. |
[3] |
K. C. Chang, K. Pearson and T. Zhang,
Perron-Frobenius Theorem for Nonnegative Tensors, Commun. Math. Sci., 6 (2008), 507-520.
doi: 10.4310/CMS.2008.v6.n2.a12. |
[4] |
C. Chicone, Ordinary Differential Equations with Applications, 2nd edition, Springer-Verlag, New York, 2006. |
[5] |
B. S. Goh,
Stability in models of mutualism, Amer. Natur., 113 (1979), 261-275.
doi: 10.1086/283384. |
[6] |
L. Gurvits, R. Shorten and O. Mason,
On the stability of switched positive linear systems, IEEE Trans. Automat. Control, 52 (2007), 1099-1103.
doi: 10.1109/TAC.2007.899057. |
[7] |
M. W. Hirsch and H. L. Smith, Monotone dynamical systems, Handbook of Differential Equations: Ordinary Differential Equations, Vol. II, 239–357, Elsevier B. V., Amsterdam, (2005). |
[8] |
K. Josić and R. Rosenbaum,
Unstable solutions of nonautonomous linear differential equations, SIAM Review, 50 (2008), 570-584.
doi: 10.1137/060677057. |
[9] |
T. Malik and H. L. Smith,
Does dormancy increase fitness of bacterial populations in time varying environments?, Bull. Math. Biol., 70 (2008), 1140-1162.
doi: 10.1007/s11538-008-9294-5. |
[10] |
R. M. May and A. R. McLean, Theoretical Ecology: Principles and Applications, 3nd edition, Oxford, UK, 2007. |
[11] |
J. Mierczyński,
Instability in linear cooperative systems of ordinary differential equations, SIAM Review, 59 (2017), 649-670.
doi: 10.1137/141001147. |
[12] |
J. D. Murray, Mathematical Biology I: An Introduction, 3nd edition, Springer-Verlag, New York, 2002. |
[13] |
H. L. Smith, Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, 41. AMS, Providence, RI, 1995. |
[14] |
S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edition, Springer-Verlag, New York, 2003. |

[1] |
Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208 |
[2] |
Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 |
[3] |
Brian Ryals, Robert J. Sacker. Bifurcation in the almost periodic $ 2 $D Ricker map. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021089 |
[4] |
Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030 |
[5] |
Jing Li, Gui-Quan Sun, Zhen Jin. Interactions of time delay and spatial diffusion induce the periodic oscillation of the vegetation system. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021127 |
[6] |
İsmail Özcan, Sirma Zeynep Alparslan Gök. On cooperative fuzzy bubbly games. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021010 |
[7] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[8] |
Demou Luo, Qiru Wang. Dynamic analysis on an almost periodic predator-prey system with impulsive effects and time delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3427-3453. doi: 10.3934/dcdsb.2020238 |
[9] |
M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202 |
[10] |
Leon Mons. Partial regularity for parabolic systems with VMO-coefficients. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021041 |
[11] |
Yongkun Wang, Fengshou He, Xiaobo Deng. Multi-aircraft cooperative path planning for maneuvering target detection. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021050 |
[12] |
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021035 |
[13] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[14] |
Fang Li, Jie Pan. On inner Poisson structures of a quantum cluster algebra without coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021021 |
[15] |
Hongjie Dong, Xinghong Pan. On conormal derivative problem for parabolic equations with Dini mean oscillation coefficients. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021049 |
[16] |
Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021043 |
[17] |
Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129 |
[18] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[19] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[20] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
Impact Factor: 0.263
Tools
Article outline
Figures and Tables
[Back to Top]