doi: 10.3934/era.2021026

Instability and bifurcation of a cooperative system with periodic coefficients

1. 

School of Mathematical Sciences University of Science and Technology of China, Hefei, Anhui 230026, China

2. 

School of Mathematical Sciences, Huaqiao University, Quanzhou, Fujian 362021, China

* Corresponding author: Tian Hou

Received  November 2020 Revised  January 2021 Published  March 2021

Fund Project: This work is supported by NSF of China No. 11825106, 11871231 and 11771414, CAS Wu Wen-Tsun Key Laboratory of Mathematics, University of Science and Technology of China

In this paper, we focus on a linear cooperative system with periodic coefficients proposed by Mierczyński [SIAM Review 59(2017), 649-670]. By introducing a switching strategy parameter $ \lambda $ in the periodic coefficients, the bifurcation of instability and the optimization of the switching strategy are investigated. The critical value of unstable branches is determined by appealing to the theory of monotone dynamical system. A bifurcation diagram is presented and numerical examples are given to illustrate the effectiveness of our theoretical result.

Citation: Tian Hou, Yi Wang, Xizhuang Xie. Instability and bifurcation of a cooperative system with periodic coefficients. Electronic Research Archive, doi: 10.3934/era.2021026
References:
[1]

M. BenaïmS. Le BorgneF. Malrieu and P.-A. Zitt, On the stability of planar randomly switched systems, Ann. Appl. Probab, 24 (2014), 292-311.  doi: 10.1214/13-AAP924.  Google Scholar

[2]

D. H. BoucherS. James and K. H. Keeler, The ecology of mutualism, Annual Review of Ecology and Systematics, 13 (1982), 315-347.  doi: 10.1146/annurev.es.13.110182.001531.  Google Scholar

[3]

K. C. ChangK. Pearson and T. Zhang, Perron-Frobenius Theorem for Nonnegative Tensors, Commun. Math. Sci., 6 (2008), 507-520.  doi: 10.4310/CMS.2008.v6.n2.a12.  Google Scholar

[4]

C. Chicone, Ordinary Differential Equations with Applications, 2nd edition, Springer-Verlag, New York, 2006.  Google Scholar

[5]

B. S. Goh, Stability in models of mutualism, Amer. Natur., 113 (1979), 261-275.  doi: 10.1086/283384.  Google Scholar

[6]

L. GurvitsR. Shorten and O. Mason, On the stability of switched positive linear systems, IEEE Trans. Automat. Control, 52 (2007), 1099-1103.  doi: 10.1109/TAC.2007.899057.  Google Scholar

[7]

M. W. Hirsch and H. L. Smith, Monotone dynamical systems, Handbook of Differential Equations: Ordinary Differential Equations, Vol. II, 239–357, Elsevier B. V., Amsterdam, (2005).  Google Scholar

[8]

K. Josić and R. Rosenbaum, Unstable solutions of nonautonomous linear differential equations, SIAM Review, 50 (2008), 570-584.  doi: 10.1137/060677057.  Google Scholar

[9]

T. Malik and H. L. Smith, Does dormancy increase fitness of bacterial populations in time varying environments?, Bull. Math. Biol., 70 (2008), 1140-1162.  doi: 10.1007/s11538-008-9294-5.  Google Scholar

[10]

R. M. May and A. R. McLean, Theoretical Ecology: Principles and Applications, 3nd edition, Oxford, UK, 2007.  Google Scholar

[11]

J. Mierczyński, Instability in linear cooperative systems of ordinary differential equations, SIAM Review, 59 (2017), 649-670.  doi: 10.1137/141001147.  Google Scholar

[12]

J. D. Murray, Mathematical Biology I: An Introduction, 3nd edition, Springer-Verlag, New York, 2002.  Google Scholar

[13]

H. L. Smith, Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, 41. AMS, Providence, RI, 1995.  Google Scholar

[14]

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edition, Springer-Verlag, New York, 2003.  Google Scholar

show all references

References:
[1]

M. BenaïmS. Le BorgneF. Malrieu and P.-A. Zitt, On the stability of planar randomly switched systems, Ann. Appl. Probab, 24 (2014), 292-311.  doi: 10.1214/13-AAP924.  Google Scholar

[2]

D. H. BoucherS. James and K. H. Keeler, The ecology of mutualism, Annual Review of Ecology and Systematics, 13 (1982), 315-347.  doi: 10.1146/annurev.es.13.110182.001531.  Google Scholar

[3]

K. C. ChangK. Pearson and T. Zhang, Perron-Frobenius Theorem for Nonnegative Tensors, Commun. Math. Sci., 6 (2008), 507-520.  doi: 10.4310/CMS.2008.v6.n2.a12.  Google Scholar

[4]

C. Chicone, Ordinary Differential Equations with Applications, 2nd edition, Springer-Verlag, New York, 2006.  Google Scholar

[5]

B. S. Goh, Stability in models of mutualism, Amer. Natur., 113 (1979), 261-275.  doi: 10.1086/283384.  Google Scholar

[6]

L. GurvitsR. Shorten and O. Mason, On the stability of switched positive linear systems, IEEE Trans. Automat. Control, 52 (2007), 1099-1103.  doi: 10.1109/TAC.2007.899057.  Google Scholar

[7]

M. W. Hirsch and H. L. Smith, Monotone dynamical systems, Handbook of Differential Equations: Ordinary Differential Equations, Vol. II, 239–357, Elsevier B. V., Amsterdam, (2005).  Google Scholar

[8]

K. Josić and R. Rosenbaum, Unstable solutions of nonautonomous linear differential equations, SIAM Review, 50 (2008), 570-584.  doi: 10.1137/060677057.  Google Scholar

[9]

T. Malik and H. L. Smith, Does dormancy increase fitness of bacterial populations in time varying environments?, Bull. Math. Biol., 70 (2008), 1140-1162.  doi: 10.1007/s11538-008-9294-5.  Google Scholar

[10]

R. M. May and A. R. McLean, Theoretical Ecology: Principles and Applications, 3nd edition, Oxford, UK, 2007.  Google Scholar

[11]

J. Mierczyński, Instability in linear cooperative systems of ordinary differential equations, SIAM Review, 59 (2017), 649-670.  doi: 10.1137/141001147.  Google Scholar

[12]

J. D. Murray, Mathematical Biology I: An Introduction, 3nd edition, Springer-Verlag, New York, 2002.  Google Scholar

[13]

H. L. Smith, Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, 41. AMS, Providence, RI, 1995.  Google Scholar

[14]

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edition, Springer-Verlag, New York, 2003.  Google Scholar

Figure 2.1.  The red region U (consists of U1 and U2) is the unstable region, the green region S is the asymptotically stable region, and the boundary between them are the Lyapunov stable region
[1]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[2]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[3]

Brian Ryals, Robert J. Sacker. Bifurcation in the almost periodic $ 2 $D Ricker map. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021089

[4]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[5]

Jing Li, Gui-Quan Sun, Zhen Jin. Interactions of time delay and spatial diffusion induce the periodic oscillation of the vegetation system. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021127

[6]

İsmail Özcan, Sirma Zeynep Alparslan Gök. On cooperative fuzzy bubbly games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021010

[7]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[8]

Demou Luo, Qiru Wang. Dynamic analysis on an almost periodic predator-prey system with impulsive effects and time delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3427-3453. doi: 10.3934/dcdsb.2020238

[9]

M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202

[10]

Leon Mons. Partial regularity for parabolic systems with VMO-coefficients. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021041

[11]

Yongkun Wang, Fengshou He, Xiaobo Deng. Multi-aircraft cooperative path planning for maneuvering target detection. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021050

[12]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021035

[13]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[14]

Fang Li, Jie Pan. On inner Poisson structures of a quantum cluster algebra without coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021021

[15]

Hongjie Dong, Xinghong Pan. On conormal derivative problem for parabolic equations with Dini mean oscillation coefficients. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021049

[16]

Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021043

[17]

Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129

[18]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[19]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[20]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

 Impact Factor: 0.263

Article outline

Figures and Tables

[Back to Top]