[1]
|
O. M. Alifaov, Inverse Heat Transfer Problems, Spriger-Verlag, Berlin, 1994.
|
[2]
|
A. L. Bukhgeim and M. V. Klibanov, Uniqueness in the large of a class of multidimensional inverse problems, Dokl. Akad. Nauk SSSR, 260 (1981), 269-272.
|
[3]
|
X. Cao, H. Diao and H. Liu, Determining a piecewise conductive medium body by a single far-field measurement, CSIAM Transactions on Applied Mathematics, 1 (2020), 740-765.
doi: 10.13140/RG.2.2.19443.76327.
|
[4]
|
X. Cao, Y.-H. Lin and H. Liu, Simultaneously recovering potentials and embedded obstacles for anisotropic fractional Schrödinger operators, Inverse Probl. Imaging, 13 (2019), 197-210.
doi: 10.3934/ipi.2019011.
|
[5]
|
X. Cao and H. Liu, Determining a fractional Helmholtz system with unknown source and medium parameter, Commun. Math. Sci., 17 (2019), 1861-1876.
doi: 10.4310/CMS.2019.v17.n7.a5.
|
[6]
|
Y. H. Dai and Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property, SIAM J. Optim., 10 (1999), 177-182.
doi: 10.1137/S1052623497318992.
|
[7]
|
Y. Deng, J. Li and H. Liu, On identifying magnetized anomalies using geomagnetic monitoring, Arch. Ration. Mech. Anal., 231 (2019), 153-187.
doi: 10.1007/s00205-018-1276-7.
|
[8]
|
Y. Deng, J. Li and H. Liu, On identifying magnetized anomalies using geomagnetic monitoring within a magnetohydrodynamic model, Arch. Ration. Mech. Anal., 235 (2020), 691-721.
doi: 10.1007/s00205-019-01429-x.
|
[9]
|
Y. Deng and Z. Liu,, Iteration methods on sideways parabolic equations, Inverse Problems, 25 (2009), 095004, 14 pp.
doi: 10.1088/0266-5611/25/9/095004.
|
[10]
|
Y. Deng, H. Liu and X. Liu, Recovery of an embedded obstacle and the surrounding medium for Maxwell's system, J. Differential Equations, 267 (2019), 2192-2209.
doi: 10.1016/j.jde.2019.03.009.
|
[11]
|
Y. Deng, H. Liu and W.-Y. Tsui, Identifying variations of magnetic anomalies using geomagnetic monitoring, Discrete Contin. Dyn. Syst., 40 (2020), 6411-6440.
doi: 10.3934/dcds.2020285.
|
[12]
|
Y. Deng, H. Liu and G. Uhlmann, On an inverse boundary problem arising in brain imaging, J. Differential Equations, 267 (2019), 2471-2502.
doi: 10.1016/j.jde.2019.03.019.
|
[13]
|
W. Hu, Y. Gu and C.-M. Fan, A meshless collocation scheme for inverse heat conduction problem in three-dimensional functionally graded materials, Eng. Anal. Bound. Elem., 114 (2020), 1-7.
doi: 10.1016/j.enganabound.2020.02.001.
|
[14]
|
M. A. Kant and P. R. von Rohr, Determination of surface heat flux distributions by using surface temperature measurements and applying inverse techniques, International Journal of Heat and Mass Transfer, 99 (2016), 1-9.
doi: 10.1016/j.ijheatmasstransfer.2016.03.082.
|
[15]
|
V. A. Khoa, G. W. Bidney, M. V. Klibanov, Loc H. Nguyen, Lam H. Nguyen, A. J. Sullivan and V. N. Astratov, Convexification and experimental data for a 3D inverse scattering problem with the moving point source, Inverse Problems, 36 (2020), 085007, 34 pp.
|
[16]
|
M. V. Klibanov, J. Li and W. Zhang, Convexification of electrical impedance tomography with restricted Dirichlet-to-Neumann map data, Inverse Problems, 35 (2019), 035005, 33 pp.
doi: 10.1088/1361-6420/aafecd.
|
[17]
|
J. Li, H. Liu and S. Ma, Determining a random Schrödinger operator: Both potential and source are random, Comm. Math. Phys., 381 (2021), 527-556.
doi: 10.1007/s00220-020-03889-9.
|
[18]
|
J. Li, H. Liu and S. Ma, Determining a random Schrödinger equation with unknown source and potential, SIAM J. Math. Anal., 51 (2019), 3465-3491.
doi: 10.1137/18M1225276.
|
[19]
|
R.-E. Plessix, A review of the adjoint-state method for computing the gradient of a functional with geophysical applications, Geophysical Journal International, 167 (2006), 495-503.
doi: 10.1111/j.1365-246X.2006.02978.x.
|
[20]
|
R. A. Ponram, B. H. Prasad and S. S. Kumar, Thickness mapping of rocket motor casing using ultrasonic thickness gauge, Materials Today: Proceedings, 5 (2018), 11371-11375.
doi: 10.1016/j.matpr.2018.02.104.
|
[21]
|
M. J. D. Powell, Restart procedures for the conjugate gradient method, Math. Programming, 12 (1977), 241-254.
doi: 10.1007/BF01593790.
|
[22]
|
W. Sun and Y. -X. Yuan, Optimization Theory and Methods, Nonlinear Programming, Springer, New York, 2006.
|
[23]
|
D. Wei, Y.-A. Shi, B.-N. Shou, Y.-W. Gui, Y.-X. Du and G.-M. Xiao, Reconstruction of internal temperature distributions in heat materials by ultrasonic measurements, Applied Thermal Engineering, 112 (2017), 38-44.
doi: 10.1016/j.applthermaleng.2016.09.169.
|
[24]
|
D. Wei, X. Yang, Y. Shi, G. Xiao, Y. Du and Y. Gui, A method for reconstructing two-dimensional surface and internal temperature distributions in structures by ultrasonic measurements, Renewable Energy, 150 (2020), 1108-1117.
doi: 10.1016/j.renene.2019.10.081.
|
[25]
|
Y.-X. Yuan, Analysis on the conjugate gradient method, Optimization Methods and Software, 2 (1993), 19-29.
doi: 10.1080/10556789308805532.
|