\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Simultaneous recovery of surface heat flux and thickness of a solid structure by ultrasonic measurements

  • * Corresponding author: Hongyu Liu

    * Corresponding author: Hongyu Liu 
Abstract / Introduction Full Text(HTML) Figure(4) / Table(2) Related Papers Cited by
  • This paper is concerned with a practical inverse problem of simultaneously reconstructing the surface heat flux and the thickness of a solid structure from the associated ultrasonic measurements. In a thermoacoustic coupling model, the thermal boundary condition and the thickness of a solid structure are both unknown, while the measurements of the propagation time by ultrasonic sensors are given. We reformulate the inverse problem as a PDE-constrained optimization problem by constructing a proper objective functional. We then develop an alternating iteration scheme which combines the conjugate gradient method and the deepest decent method to solve the optimization problem. Rigorous convergence analysis is provided for the proposed numerical scheme. By using experimental real data from the lab, we conduct extensive numerical experiments to verify several promising features of the newly developed method.

    Mathematics Subject Classification: Primary: 35K05, 49N45, 65N21.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  A one-dimensional model based on ultrasonic detection

    Figure 2.  The definition of figure

    Figure 3.  Heat flux inversion results with the acoustic time accuracy fixed to be $ 10^{-10} $. (a): under a fixed initial heat flux and different initial thicknesses, (b): under a fixed initial thickness and different initial heat fluxes

    Figure 4.  Heat flux inversion results with the acoustic time accuracy fixed to be $ 10^{-11} $. (a): under a fixed initial heat flux and different initial thicknesses, (b): under a fixed initial thickness and different initial heat fluxes

    Table 1.  Convergence of the iteration method with different initial guesses and measurement errors

    Acoustic time initial heat flux initial thickness reconstructed iterations
    accuracy $ (s) $ $ q^0(\rm{{J}/{s}}) $ $ L^0(\rm{mm}) $ thickness $ L(\rm{mm}) $ $ \rm{n} $
    $ 10^{-9} $ 0 3 50.0006 138
    $ 10^{-10} $ $ 0 $ 3 50.0006 64
    $ 10^{-11} $ $ 0 $ 3 50.0006 63
    $ 10^{-9} $ $ 1\times10^3 $ 45 50.0032 208
    $ 10^{-10} $ $ 1\times10^3 $ 45 50.0028 115
    $ 10^{-11} $ $ 1\times10^3 $ 45 50.0025 108
     | Show Table
    DownLoad: CSV

    Table 2.  Convergence of the proposed iteration method with different initial guesses and measurement errors

    acoustic time initial heat flux initial thickness reconstructed thickness iterations
    accuracy $ q^0(\rm{{J}/{s}}) $ $ L^0(\rm{mm}) $ $ L(\rm{mm}) $ $ n $
    $ 10^{-10} $ 0 3 50.0006 64
    $ 10^{-10} $ $ 1\times10^3 $ 3 50.0016 58
    $ 10^{-10} $ $ 1\times10^5 $ 3 50.0000 133
    $ 10^{-10} $ 0 45 50.0025 126
    $ 10^{-10} $ $ 1\times10^3 $ 45 50.0028 115
    $ 10^{-10} $ 0 80 50.0028 77
    $ 10^{-10} $ $ 1\times10^3 $ 80 50.0046 92
    $ 10^{-11} $ 0 3 50.0006 63
    $ 10^{-11} $ $ 1\times10^3 $ 3 50.0016 57
    $ 10^{-11} $ $ 1\times10^5 $ 3 50.0006 147
    $ 10^{-11} $ 0 45 50.0025 126
    $ 10^{-11} $ $ 1\times10^3 $ 45 50.0025 108
    $ 10^{-11} $ 0 80 50.0028 77
    $ 10^{-11} $ $ 1\times10^3 $ 80 50.0029 80
     | Show Table
    DownLoad: CSV
  • [1] O. M. Alifaov, Inverse Heat Transfer Problems, Spriger-Verlag, Berlin, 1994.
    [2] A. L. Bukhgeim and M. V. Klibanov, Uniqueness in the large of a class of multidimensional inverse problems, Dokl. Akad. Nauk SSSR, 260 (1981), 269-272. 
    [3] X. CaoH. Diao and H. Liu, Determining a piecewise conductive medium body by a single far-field measurement, CSIAM Transactions on Applied Mathematics, 1 (2020), 740-765.  doi: 10.13140/RG.2.2.19443.76327.
    [4] X. CaoY.-H. Lin and H. Liu, Simultaneously recovering potentials and embedded obstacles for anisotropic fractional Schrödinger operators, Inverse Probl. Imaging, 13 (2019), 197-210.  doi: 10.3934/ipi.2019011.
    [5] X. Cao and H. Liu, Determining a fractional Helmholtz system with unknown source and medium parameter, Commun. Math. Sci., 17 (2019), 1861-1876.  doi: 10.4310/CMS.2019.v17.n7.a5.
    [6] Y. H. Dai and Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property, SIAM J. Optim., 10 (1999), 177-182.  doi: 10.1137/S1052623497318992.
    [7] Y. DengJ. Li and H. Liu, On identifying magnetized anomalies using geomagnetic monitoring, Arch. Ration. Mech. Anal., 231 (2019), 153-187.  doi: 10.1007/s00205-018-1276-7.
    [8] Y. DengJ. Li and H. Liu, On identifying magnetized anomalies using geomagnetic monitoring within a magnetohydrodynamic model, Arch. Ration. Mech. Anal., 235 (2020), 691-721.  doi: 10.1007/s00205-019-01429-x.
    [9] Y. Deng and Z. Liu,, Iteration methods on sideways parabolic equations, Inverse Problems, 25 (2009), 095004, 14 pp. doi: 10.1088/0266-5611/25/9/095004.
    [10] Y. DengH. Liu and X. Liu, Recovery of an embedded obstacle and the surrounding medium for Maxwell's system, J. Differential Equations, 267 (2019), 2192-2209.  doi: 10.1016/j.jde.2019.03.009.
    [11] Y. DengH. Liu and W.-Y. Tsui, Identifying variations of magnetic anomalies using geomagnetic monitoring, Discrete Contin. Dyn. Syst., 40 (2020), 6411-6440.  doi: 10.3934/dcds.2020285.
    [12] Y. DengH. Liu and G. Uhlmann, On an inverse boundary problem arising in brain imaging, J. Differential Equations, 267 (2019), 2471-2502.  doi: 10.1016/j.jde.2019.03.019.
    [13] W. HuY. Gu and C.-M. Fan, A meshless collocation scheme for inverse heat conduction problem in three-dimensional functionally graded materials, Eng. Anal. Bound. Elem., 114 (2020), 1-7.  doi: 10.1016/j.enganabound.2020.02.001.
    [14] M. A. Kant and P. R. von Rohr, Determination of surface heat flux distributions by using surface temperature measurements and applying inverse techniques, International Journal of Heat and Mass Transfer, 99 (2016), 1-9.  doi: 10.1016/j.ijheatmasstransfer.2016.03.082.
    [15] V. A. Khoa, G. W. Bidney, M. V. Klibanov, Loc H. Nguyen, Lam H. Nguyen, A. J. Sullivan and V. N. Astratov, Convexification and experimental data for a 3D inverse scattering problem with the moving point source, Inverse Problems, 36 (2020), 085007, 34 pp.
    [16] M. V. Klibanov, J. Li and W. Zhang, Convexification of electrical impedance tomography with restricted Dirichlet-to-Neumann map data, Inverse Problems, 35 (2019), 035005, 33 pp. doi: 10.1088/1361-6420/aafecd.
    [17] J. LiH. Liu and S. Ma, Determining a random Schrödinger operator: Both potential and source are random, Comm. Math. Phys., 381 (2021), 527-556.  doi: 10.1007/s00220-020-03889-9.
    [18] J. LiH. Liu and S. Ma, Determining a random Schrödinger equation with unknown source and potential, SIAM J. Math. Anal., 51 (2019), 3465-3491.  doi: 10.1137/18M1225276.
    [19] R.-E. Plessix, A review of the adjoint-state method for computing the gradient of a functional with geophysical applications, Geophysical Journal International, 167 (2006), 495-503.  doi: 10.1111/j.1365-246X.2006.02978.x.
    [20] R. A. PonramB. H. Prasad and S. S. Kumar, Thickness mapping of rocket motor casing using ultrasonic thickness gauge, Materials Today: Proceedings, 5 (2018), 11371-11375.  doi: 10.1016/j.matpr.2018.02.104.
    [21] M. J. D. Powell, Restart procedures for the conjugate gradient method, Math. Programming, 12 (1977), 241-254.  doi: 10.1007/BF01593790.
    [22] W. Sun and Y. -X. Yuan, Optimization Theory and Methods, Nonlinear Programming, Springer, New York, 2006.
    [23] D. WeiY.-A. ShiB.-N. ShouY.-W. GuiY.-X. Du and G.-M. Xiao, Reconstruction of internal temperature distributions in heat materials by ultrasonic measurements, Applied Thermal Engineering, 112 (2017), 38-44.  doi: 10.1016/j.applthermaleng.2016.09.169.
    [24] D. WeiX. YangY. ShiG. XiaoY. Du and Y. Gui, A method for reconstructing two-dimensional surface and internal temperature distributions in structures by ultrasonic measurements, Renewable Energy, 150 (2020), 1108-1117.  doi: 10.1016/j.renene.2019.10.081.
    [25] Y.-X. Yuan, Analysis on the conjugate gradient method, Optimization Methods and Software, 2 (1993), 19-29.  doi: 10.1080/10556789308805532.
  • 加载中

Figures(4)

Tables(2)

SHARE

Article Metrics

HTML views(2350) PDF downloads(221) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return