[1]
|
S. Adjerid, N. Chaabane and T. Lin, An immersed discontinuous finite element method for Stokes interface problems, Comput. Methods Appl. Mech. Engrg., 293 (2015), 170-190.
doi: 10.1016/j.cma.2015.04.006.
|
[2]
|
D. N. Arnold, On nonconforming linear-constant elements for some variants of the Stokes equations, Istit. Lombardo Accad. Sci. Lett. Rend. A, 127 (1993), 83-93.
|
[3]
|
N. Chaabane, Immersed and Discontinuous Finite Element Methods, Thesis (Ph.D.)-Virginia Polytechnic Institute and State University. 2015.
|
[4]
|
Z. Chen, Finite Element Methods and their Applications, Scientific Computation. Springer-Verlag, Berlin, 2005.
|
[5]
|
Y. Chen and X. Zhang, A $P_2$-$P_1$ partially penalized immersed finite element method for Stokes interface problems, Int. J. Numer. Anal. Model., 18 (2021), 120-141.
|
[6]
|
M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Franç caise Automat. Informat. Recherche Opérationnelle Sér. Rouge, 7 (1973), 33-75.
|
[7]
|
F. Duarte, R. Gormaz and S. Natesan, Arbitrary Lagrangian-Eulerian method for Navier-Stokes equations with moving boundaries, Comput. Methods Appl. Mech. Engrg., 193 (2004), 4819-4836.
doi: 10.1016/j.cma.2004.05.003.
|
[8]
|
V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, volume 5 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 1986. Theory and algorithms.
doi: 10.1007/978-3-642-61623-5.
|
[9]
|
S. Großand and A. Reusken, An extended pressure finite element space for two-phase incompressible flows with surface tension, J. Comput. Phys., 224 (2007), 40-58.
doi: 10.1016/j.jcp.2006.12.021.
|
[10]
|
R. Guo, Solving parabolic moving interface problems with dynamical immersed spaces on unfitted meshes: Fully discrete analysis, SIAM J. Numer. Anal., 59 (2021), 797-828.
doi: 10.1137/20M133508X.
|
[11]
|
R. Guo and T. Lin, A group of immersed finite element spaces for elliptic interface problems, IMA J. Numer. Anal., 39 (2019), 482-511.
doi: 10.1093/imanum/drx074.
|
[12]
|
R. Guo, T. Lin and Y. Lin, A fixed mesh method with immersed finite elements for solving interface inverse problems, J. Sci. Comput., 79 (2019), 148-175.
doi: 10.1007/s10915-018-0847-y.
|
[13]
|
R. Guo, T. Lin and Y. Lin, Recovering elastic inclusions by shape optimization methods with immersed finite elements, J. Comput. Phys., 404 (2020), 109123, 24 pp.
doi: 10.1016/j.jcp.2019.109123.
|
[14]
|
R. Guo, T. Lin and Q. Zhuang, Improved error estimation for the partially penalized immersed finite element methods for elliptic interface problems, Int. J. Numer. Anal. Model., 16 (2019), 575-589.
|
[15]
|
P. Hansbo, M. G. Larson and S. Zahedi, A cut finite element method for a Stokes interface problem, Appl. Numer. Math., 85 (2014), 90-114.
doi: 10.1016/j.apnum.2014.06.009.
|
[16]
|
X. He, T. Lin and Y. Lin, Immersed finite element methods for elliptic interface problems with non-homogeneous jump conditions, Int. J. Numer. Anal. Model., 8 (2011), 284-301.
|
[17]
|
X. He, T. Lin, Y. Lin and X. Zhang, Immersed finite element methods for parabolic equations with moving interface, Numer. Methods Partial Differential Equations, 29 (2013), 619-646.
doi: 10.1002/num.21722.
|
[18]
|
C. He and X. Zhang, Residual-based a posteriori error estimation for immersed finite element methods, J. Sci. Comput., 81 (2019), 2051-2079.
doi: 10.1007/s10915-019-01071-5.
|
[19]
|
V. John, Finite Element Methods for Incompressible Flow Problems, volume 51 of Springer Series in Computational Mathematics, Springer, Cham, 2016.
doi: 10.1007/978-3-319-45750-5.
|
[20]
|
D. Jones and X. Zhang, A class of nonconforming immersed finite element methods for Stokes interface problems, J. Comput. Appl. Math., 392 (2021), 113493.
doi: 10.1016/j.cam.2021.113493.
|
[21]
|
R. Kouhia and R. Stenberg, A linear nonconforming finite element method for nearly incompressible elasticity and Stokes flow, Comput. Methods Appl. Mech. Engrg., 124 (1995), 195-212.
doi: 10.1016/0045-7825(95)00829-P.
|
[22]
|
R. Lan and P. Sun, A monolithic arbitrary Lagrangian-Eulerian finite element analysis for a Stokes/parabolic moving interface problem, J. Sci. Comput., 82 (2020), Paper No. 59, 36 pp.
doi: 10.1007/s10915-020-01161-9.
|
[23]
|
J. Li and Z. Chen, A new local stabilized nonconforming finite element method for the Stokes equations, Computing, 82 (2008), 157-170.
doi: 10.1007/s00607-008-0001-z.
|
[24]
|
Z. Li, T. Lin and X. Wu, New Cartesian grid methods for interface problems using the finite element formulation, Numer. Math., 96 (2003), 61-98.
doi: 10.1007/s00211-003-0473-x.
|
[25]
|
T. Lin, Y. Lin and X. Zhang, A method of lines based on immersed finite elements for parabolic moving interface problems, Adv. Appl. Math. Mech., 5 (2013), 548-568.
doi: 10.4208/aamm.13-13S11.
|
[26]
|
T. Lin, Y. Lin and X. Zhang, Partially penalized immersed finite element methods for elliptic interface problems, SIAM J. Numer. Anal., 53 (2015), 1121-1144.
doi: 10.1137/130912700.
|
[27]
|
T. Lin, D. Sheen and X. Zhang, A locking-free immersed finite element method for planar elasticity interface problems, J. Comput. Phys., 247 (2013), 228-247.
doi: 10.1016/j.jcp.2013.03.053.
|
[28]
|
T. Lin, D. Sheen and X. Zhang, A nonconforming immersed finite element method for elliptic interface problems, J. Sci. Comput., 79 (2019), 442-463.
doi: 10.1007/s10915-018-0865-9.
|
[29]
|
T. Lin and X. Zhang, Linear and bilinear immersed finite elements for planar elasticity interface problems, J. Comput. Appl. Math., 236 (2012), 4681-4699.
doi: 10.1016/j.cam.2012.03.012.
|
[30]
|
T. Lin and Q. Zhuang, Optimal error bounds for partially penalized immersed finite element methods for parabolic interface problems, J. Comput. Appl. Math., 366 (2020), 112401, 11 pp.
doi: 10.1016/j.cam.2019.112401.
|
[31]
|
A. Lundberg, P. Sun and C. Wang, Distributed Lagrange multiplier-fictitious domain finite element method for Stokes interface problems, Int. J. Numer. Anal. Model., 16 (2019), 939-963.
|
[32]
|
R. Rannacher and S. Turek, Simple nonconforming quadrilateral Stokes element, Numer. Methods Partial Differential Equations, 8 (1992), 97-111.
doi: 10.1002/num.1690080202.
|
[33]
|
B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations, volume 35 of Frontiers in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008. Theory and implementation.
doi: 10.1137/1.9780898717440.
|
[34]
|
P. Sun, Fictitious domain finite element method for Stokes/elliptic interface problems with jump coefficients, J. Comput. Appl. Math., 356 (2019), 81-97.
doi: 10.1016/j.cam.2019.01.030.
|
[35]
|
C. Taylor and P. Hood, A numerical solution of the Navier-Stokes equations using the finite element technique, Internat. J. Comput. & Fluids, 1 (1973), 73-100.
doi: 10.1016/0045-7930(73)90027-3.
|
[36]
|
N. Wang and J. Chen, A nonconforming Nitsche's extended finite element method for Stokes
interface problems, J. Sci. Comput., 81 (2019), 342-374.
doi: 10.1007/s10915-019-01019-9.
|
[37]
|
N. K. Yamaleev, D. C. Del Rey Fernández, J. Lou and M. H. Carpenter, Entropy stable spectral collocation schemes for the 3-D Navier-Stokes equations on dynamic unstructured grids, J. Comput. Phys., 399 (2019), 108897, 27 pp.
doi: 10.1016/j.jcp.2019.108897.
|
[38]
|
M. Zhang and S. Zhang, A 3D conforming-nonconforming mixed finite element for solving symmetric stress Stokes equations, Int. J. Numer. Anal. Model., 14 (2017), 730-743.
|