• Previous Article
    Enhancement of gamma oscillations in E/I neural networks by increase of difference between external inputs
  • ERA Home
  • This Issue
  • Next Article
    Synchronization for a class of complex-valued memristor-based competitive neural networks(CMCNNs) with different time scales
doi: 10.3934/era.2021033
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Relative mmp without $ \mathbb{Q} $-factoriality

Princeton University, Princeton NJ 08544-1000, USA

Received  December 2020 Revised  February 2021 Early access April 2021

Fund Project: Partial financial support was provided by the NSF under grant number DMS-1901855

We consider the minimal model program for varieties that are not $ \mathbb{Q}$-factorial. We show that, in many cases, its steps are simpler than expected. The main applications are to log terminal singularities, removing the earlier $ \mathbb{Q} $-factoriality assumption from several theorems of Hacon-Witaszek and de Fernex-Kollár-Xu.

Citation: János Kollár. Relative mmp without $ \mathbb{Q} $-factoriality. Electronic Research Archive, doi: 10.3934/era.2021033
References:
[1]

Flips and Abundance for Algebraic Threefolds, Société Mathématique de France, Paris, 1992, Papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, Utah, August 1991, Astérisque No. 211, (1992). Google Scholar

[2]

H. Ahmadinezhad, M. Fedorchuk and I. Krylov, Stability of fibrations over one-dimensional bases, 2019, arXiv: 1912.08779. Google Scholar

[3]

V. Alexeev, Moduli of Weighted Hyperplane Arrangements, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser/Springer, Basel, 2015, Edited by Gilberto Bini, Martí Lahoz, Emanuele Macrì and Paolo Stellari. doi: 10.1007/978-3-0348-0915-3.  Google Scholar

[4]

E. Arvidsson, F. Bernasconi and J. Lacini, On the Kawamata-Viehweg vanishing for log del Pezzo surfaces in positive characteristic, 2020, arXiv: 2006.03571. Google Scholar

[5]

F. Bernasconi and J. Kollár, Vanishing theorems for threefolds in characteristic $p>5$, 2020, arXiv: 2012.08343. Google Scholar

[6]

B. Bhatt, L. Ma, Z. Patakfalvi, K. Schwede, K. Tucker, J. Waldron and J. Witaszek, Globally +-regular varieties and the minimal model program for threefolds in mixed characteristic, 2020, arXiv: 2012.15801. Google Scholar

[7]

C. BirkarP. CasciniC. D. Hacon and J. McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc., 23 (2010), 405-468.  doi: 10.1090/S0894-0347-09-00649-3.  Google Scholar

[8]

J.-F. Boutot, Schéma de Picard Local, vol. 632 of Lecture Notes in Mathematics, Springer, Berlin, 1978.  Google Scholar

[9]

J. Carvajal-Rojas and A. Stäbler, On the local étale fundamental group of KLT threefold singularities, 2020, arXiv: 2004.07628, With an appendix by János Kollár. Google Scholar

[10]

V. Cossart and O. Piltant, Resolution of singularities of arithmetical threefolds, J. Algebra, 529 (2019), 268-535.  doi: 10.1016/j.jalgebra.2019.02.017.  Google Scholar

[11]

T. de Fernex, J. Kollár and C. Xu, The dual complex of singularities, in Higher Dimensional Algebraic Geometry--in Honour of Professor Yujiro Kawamata's Sixtieth Birthday, vol. 74 of Adv. Stud. Pure Math., Math. Soc. Japan, Tokyo, (2017), 103-129. doi: 10.2969/aspm/07410103.  Google Scholar

[12]

O. Fujino, Foundations of the Minimal Model Program, vol. 35 of MSJ Memoirs, Mathematical Society of Japan, Tokyo, 2017.  Google Scholar

[13]

H. Grauert and O. Riemenschneider, Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen, Invent. Math., 11 (1970), 263-292.  doi: 10.1007/BF01403182.  Google Scholar

[14]

C. Hacon and J. Witaszek, On the rationality of Kawamata log terminal singularities in positive characteristic, Algebr. Geom., 6 (2019), 516-529.  doi: 10.14231/ag-2019-023.  Google Scholar

[15]

C. Hacon and J. Witaszek, On the relative minimal model program for threefolds in low characteristics, 2019, arXiv: 1909.12872. Google Scholar

[16]

C. Hacon and J. Witaszek, On the relative minimal model program for fourfolds in positive characteristic, 2020, arXiv: 2009.02631. Google Scholar

[17]

J. Han, J. Liu and V. V. Shokurov, Acc for minimal log discrepancies of exceptional singularities, 2019, arXiv: 1903.04338. Google Scholar

[18]

J. Kollár, Lectures on Resolution of Singularities, vol. 166 of Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, 2007.  Google Scholar

[19]

J. Kollár, A local version of the Kawamata-Viehweg vanishing theorem, Pure Appl. Math. Q., 7 (2011), 1477-1494.   Google Scholar

[20]

J. Kollár, Singularities of the Minimal Model Program, vol. 200 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 2013, With a collaboration of Sándor Kovács. doi: 10.1017/CBO9781139547895.  Google Scholar

[21]

J. Kollár, Appendix to "On the local tale fundamental group of KLT threefold singularities", 2020. Google Scholar

[22]

J. Kollár and S. Mori, Birational Geometry of Algebraic Varieties, vol. 134 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1998, With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original. doi: 10.1017/CBO9780511662560.  Google Scholar

[23]

J. Kollár and J. Witaszek, Resolution and alteration with ample exceptional divisor, 2021, arXiv: 2102.03162. Google Scholar

[24]

J. Lipman, Rational singularities, with applications to algebraic surfaces and unique factorization, Inst. Hautes Études Sci. Publ. Math., 36 (1969), 195-279, URL http://www.numdam.org/item?id=PMIHES_1969__36__195_0.  Google Scholar

[25]

Y. Odaka and C. Xu, Log-canonical models of singular pairs and its applications, Math. Res. Lett., 19 (2012), 325-334.  doi: 10.4310/MRL.2012.v19.n2.a5.  Google Scholar

[26]

A. J. Parameswaran and V. Srinivas, A variant of the Noether-Lefschetz theorem: Some new examples of unique factorisation domains, J. Algebraic Geom., 3 (1994), 81-115.   Google Scholar

[27]

A. J. Parameswaran and D. van Straten, Algebraizations with minimal class group, Internat. J. Math., 4 (1993), 989-996.  doi: 10.1142/S0129167X93000455.  Google Scholar

[28]

M. Reid, Young person's guide to canonical singularities, in Algebraic Geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), vol. 46 of Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 1987,345-414.  Google Scholar

[29]

V. V. Shokurov, Three-dimensional log perestroikas, Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 56 (1992), 105-203.  doi: 10.1070/IM1993v040n01ABEH001862.  Google Scholar

[30]

T. Stacks project authors, The stacks project, https://stacks.math.columbia.edu, 2021. Google Scholar

[31]

H. Tanaka, Minimal model program for excellent surfaces, Ann. Inst. Fourier (Grenoble), 68 (2018), 345-376.  doi: 10.5802/aif.3163.  Google Scholar

[32]

M. Temkin, Desingularization of quasi-excellent schemes in characteristic zero, Adv. Math., 219 (2008), 488-522.  doi: 10.1016/j.aim.2008.05.006.  Google Scholar

[33]

D. Villalobos-Paz, 2021, (in preparation). Google Scholar

[34]

J. Witaszek, Non Q-factorial flips in dimension three, 2020, Available from: http://www-personal.umich.edu/ jakubw/Non-Q-factorial-flips-in-dimension-three.pdf. Google Scholar

[35]

C. Xu, Finiteness of algebraic fundamental groups, Compos. Math., 150 (2014), 409-414.  doi: 10.1112/S0010437X13007562.  Google Scholar

show all references

References:
[1]

Flips and Abundance for Algebraic Threefolds, Société Mathématique de France, Paris, 1992, Papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, Utah, August 1991, Astérisque No. 211, (1992). Google Scholar

[2]

H. Ahmadinezhad, M. Fedorchuk and I. Krylov, Stability of fibrations over one-dimensional bases, 2019, arXiv: 1912.08779. Google Scholar

[3]

V. Alexeev, Moduli of Weighted Hyperplane Arrangements, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser/Springer, Basel, 2015, Edited by Gilberto Bini, Martí Lahoz, Emanuele Macrì and Paolo Stellari. doi: 10.1007/978-3-0348-0915-3.  Google Scholar

[4]

E. Arvidsson, F. Bernasconi and J. Lacini, On the Kawamata-Viehweg vanishing for log del Pezzo surfaces in positive characteristic, 2020, arXiv: 2006.03571. Google Scholar

[5]

F. Bernasconi and J. Kollár, Vanishing theorems for threefolds in characteristic $p>5$, 2020, arXiv: 2012.08343. Google Scholar

[6]

B. Bhatt, L. Ma, Z. Patakfalvi, K. Schwede, K. Tucker, J. Waldron and J. Witaszek, Globally +-regular varieties and the minimal model program for threefolds in mixed characteristic, 2020, arXiv: 2012.15801. Google Scholar

[7]

C. BirkarP. CasciniC. D. Hacon and J. McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc., 23 (2010), 405-468.  doi: 10.1090/S0894-0347-09-00649-3.  Google Scholar

[8]

J.-F. Boutot, Schéma de Picard Local, vol. 632 of Lecture Notes in Mathematics, Springer, Berlin, 1978.  Google Scholar

[9]

J. Carvajal-Rojas and A. Stäbler, On the local étale fundamental group of KLT threefold singularities, 2020, arXiv: 2004.07628, With an appendix by János Kollár. Google Scholar

[10]

V. Cossart and O. Piltant, Resolution of singularities of arithmetical threefolds, J. Algebra, 529 (2019), 268-535.  doi: 10.1016/j.jalgebra.2019.02.017.  Google Scholar

[11]

T. de Fernex, J. Kollár and C. Xu, The dual complex of singularities, in Higher Dimensional Algebraic Geometry--in Honour of Professor Yujiro Kawamata's Sixtieth Birthday, vol. 74 of Adv. Stud. Pure Math., Math. Soc. Japan, Tokyo, (2017), 103-129. doi: 10.2969/aspm/07410103.  Google Scholar

[12]

O. Fujino, Foundations of the Minimal Model Program, vol. 35 of MSJ Memoirs, Mathematical Society of Japan, Tokyo, 2017.  Google Scholar

[13]

H. Grauert and O. Riemenschneider, Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen, Invent. Math., 11 (1970), 263-292.  doi: 10.1007/BF01403182.  Google Scholar

[14]

C. Hacon and J. Witaszek, On the rationality of Kawamata log terminal singularities in positive characteristic, Algebr. Geom., 6 (2019), 516-529.  doi: 10.14231/ag-2019-023.  Google Scholar

[15]

C. Hacon and J. Witaszek, On the relative minimal model program for threefolds in low characteristics, 2019, arXiv: 1909.12872. Google Scholar

[16]

C. Hacon and J. Witaszek, On the relative minimal model program for fourfolds in positive characteristic, 2020, arXiv: 2009.02631. Google Scholar

[17]

J. Han, J. Liu and V. V. Shokurov, Acc for minimal log discrepancies of exceptional singularities, 2019, arXiv: 1903.04338. Google Scholar

[18]

J. Kollár, Lectures on Resolution of Singularities, vol. 166 of Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, 2007.  Google Scholar

[19]

J. Kollár, A local version of the Kawamata-Viehweg vanishing theorem, Pure Appl. Math. Q., 7 (2011), 1477-1494.   Google Scholar

[20]

J. Kollár, Singularities of the Minimal Model Program, vol. 200 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 2013, With a collaboration of Sándor Kovács. doi: 10.1017/CBO9781139547895.  Google Scholar

[21]

J. Kollár, Appendix to "On the local tale fundamental group of KLT threefold singularities", 2020. Google Scholar

[22]

J. Kollár and S. Mori, Birational Geometry of Algebraic Varieties, vol. 134 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1998, With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original. doi: 10.1017/CBO9780511662560.  Google Scholar

[23]

J. Kollár and J. Witaszek, Resolution and alteration with ample exceptional divisor, 2021, arXiv: 2102.03162. Google Scholar

[24]

J. Lipman, Rational singularities, with applications to algebraic surfaces and unique factorization, Inst. Hautes Études Sci. Publ. Math., 36 (1969), 195-279, URL http://www.numdam.org/item?id=PMIHES_1969__36__195_0.  Google Scholar

[25]

Y. Odaka and C. Xu, Log-canonical models of singular pairs and its applications, Math. Res. Lett., 19 (2012), 325-334.  doi: 10.4310/MRL.2012.v19.n2.a5.  Google Scholar

[26]

A. J. Parameswaran and V. Srinivas, A variant of the Noether-Lefschetz theorem: Some new examples of unique factorisation domains, J. Algebraic Geom., 3 (1994), 81-115.   Google Scholar

[27]

A. J. Parameswaran and D. van Straten, Algebraizations with minimal class group, Internat. J. Math., 4 (1993), 989-996.  doi: 10.1142/S0129167X93000455.  Google Scholar

[28]

M. Reid, Young person's guide to canonical singularities, in Algebraic Geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), vol. 46 of Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 1987,345-414.  Google Scholar

[29]

V. V. Shokurov, Three-dimensional log perestroikas, Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 56 (1992), 105-203.  doi: 10.1070/IM1993v040n01ABEH001862.  Google Scholar

[30]

T. Stacks project authors, The stacks project, https://stacks.math.columbia.edu, 2021. Google Scholar

[31]

H. Tanaka, Minimal model program for excellent surfaces, Ann. Inst. Fourier (Grenoble), 68 (2018), 345-376.  doi: 10.5802/aif.3163.  Google Scholar

[32]

M. Temkin, Desingularization of quasi-excellent schemes in characteristic zero, Adv. Math., 219 (2008), 488-522.  doi: 10.1016/j.aim.2008.05.006.  Google Scholar

[33]

D. Villalobos-Paz, 2021, (in preparation). Google Scholar

[34]

J. Witaszek, Non Q-factorial flips in dimension three, 2020, Available from: http://www-personal.umich.edu/ jakubw/Non-Q-factorial-flips-in-dimension-three.pdf. Google Scholar

[35]

C. Xu, Finiteness of algebraic fundamental groups, Compos. Math., 150 (2014), 409-414.  doi: 10.1112/S0010437X13007562.  Google Scholar

[1]

Soumya Kundu, Soumitro Banerjee, Damian Giaouris. Vanishing singularity in hard impacting systems. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 319-332. doi: 10.3934/dcdsb.2011.16.319

[2]

Hua Chen, Jian-Meng Li, Kelei Wang. On the vanishing viscosity limit of a chemotaxis model. Discrete & Continuous Dynamical Systems, 2020, 40 (3) : 1963-1987. doi: 10.3934/dcds.2020101

[3]

Piotr Bajger, Mariusz Bodzioch, Urszula Foryś. Singularity of controls in a simple model of acquired chemotherapy resistance. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2039-2052. doi: 10.3934/dcdsb.2019083

[4]

Joaquín Delgado, Eymard Hernández–López, Lucía Ivonne Hernández–Martínez. Bautin bifurcation in a minimal model of immunoediting. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1397-1414. doi: 10.3934/dcdsb.2019233

[5]

Meihua Wei, Yanling Li, Xi Wei. Stability and bifurcation with singularity for a glycolysis model under no-flux boundary condition. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 5203-5224. doi: 10.3934/dcdsb.2019129

[6]

Piotr Bajger, Mariusz Bodzioch, Urszula Foryś. Corrigendum to "Singularity of controls in a simple model of acquired chemotherapy resistance". Discrete & Continuous Dynamical Systems - B, 2020, 25 (5) : 2021-2021. doi: 10.3934/dcdsb.2020105

[7]

Marc-Auréle Lagache, Ulysse Serres, Vincent Andrieu. Minimal time synthesis for a kinematic drone model. Mathematical Control & Related Fields, 2017, 7 (2) : 259-288. doi: 10.3934/mcrf.2017009

[8]

Xiangsheng Xu. Regularity theorems for a biological network formulation model in two space dimensions. Kinetic & Related Models, 2018, 11 (2) : 397-408. doi: 10.3934/krm.2018018

[9]

Christian Winkel, Simon Neumann, Christina Surulescu, Peter Scheurich. A minimal mathematical model for the initial molecular interactions of death receptor signalling. Mathematical Biosciences & Engineering, 2012, 9 (3) : 663-683. doi: 10.3934/mbe.2012.9.663

[10]

Elena Trofimchuk, Manuel Pinto, Sergei Trofimchuk. On the minimal speed of front propagation in a model of the Belousov-Zhabotinsky reaction. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1769-1781. doi: 10.3934/dcdsb.2014.19.1769

[11]

Yajing Zhang, Xinfu Chen, Jianghao Hao, Xin Lai, Cong Qin. Dynamics of spike in a Keller-Segel's minimal chemotaxis model. Discrete & Continuous Dynamical Systems, 2017, 37 (2) : 1109-1127. doi: 10.3934/dcds.2017046

[12]

Xun Cao, Weihua Jiang. Double zero singularity and spatiotemporal patterns in a diffusive predator-prey model with nonlocal prey competition. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3461-3489. doi: 10.3934/dcdsb.2020069

[13]

Jin Lai, Huanyao Wen, Lei Yao. Vanishing capillarity limit of the non-conservative compressible two-fluid model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1361-1392. doi: 10.3934/dcdsb.2017066

[14]

Paolo Perfetti. Fixed point theorems in the Arnol'd model about instability of the action-variables in phase-space. Discrete & Continuous Dynamical Systems, 1998, 4 (2) : 379-391. doi: 10.3934/dcds.1998.4.379

[15]

Zied Douzi, Bilel Selmi. On the mutual singularity of multifractal measures. Electronic Research Archive, 2020, 28 (1) : 423-432. doi: 10.3934/era.2020024

[16]

Qinglong Zhang. Delta waves and vacuum states in the vanishing pressure limit of Riemann solutions to Baer-Nunziato two-phase flow model. Communications on Pure & Applied Analysis, 2021, 20 (9) : 3235-3258. doi: 10.3934/cpaa.2021104

[17]

Stefano Bianchini, Alberto Bressan. A case study in vanishing viscosity. Discrete & Continuous Dynamical Systems, 2001, 7 (3) : 449-476. doi: 10.3934/dcds.2001.7.449

[18]

Umberto Mosco, Maria Agostina Vivaldi. Vanishing viscosity for fractal sets. Discrete & Continuous Dynamical Systems, 2010, 28 (3) : 1207-1235. doi: 10.3934/dcds.2010.28.1207

[19]

Yimei Li, Jiguang Bao. Semilinear elliptic system with boundary singularity. Discrete & Continuous Dynamical Systems, 2020, 40 (4) : 2189-2212. doi: 10.3934/dcds.2020111

[20]

Lei Wei, Zhaosheng Feng. Isolated singularity for semilinear elliptic equations. Discrete & Continuous Dynamical Systems, 2015, 35 (7) : 3239-3252. doi: 10.3934/dcds.2015.35.3239

2020 Impact Factor: 1.833

Article outline

[Back to Top]