doi: 10.3934/era.2021049
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Identities for linear recursive sequences of order $ 2 $

1. 

Department of Mathematics, Illinois Wesleyan University, Bloomington, Illinois 61702, USA

2. 

Department of Mathematical Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, 89154-4020, USA

* Corresponding author: Tian-Xiao He

Dedicated to Professor Peter Bundschuh on the occasion of his 80th birthday

Received  January 2021 Revised  July 2021 Early access July 2021

We present here a general rule of construction of identities for recursive sequences by using sequence transformation techniques developed in [16]. Numerous identities are constructed, and many well known identities can be proved readily by using this unified rule. Various Catalan-like and Cassini-like identities are given for recursive number sequences and recursive polynomial sequences. Sets of identities for Diophantine quadruple are shown.

Citation: Tian-Xiao He, Peter J.-S. Shiue. Identities for linear recursive sequences of order $ 2 $. Electronic Research Archive, doi: 10.3934/era.2021049
References:
[1]

A. Baker and H. Davenport, The equations $3x^{2}-2 = y^{2}$ and $8x^{2}-7 = z^{2}$, Quart. J. Math. Oxford Ser., 20 (1969), 129-137.  doi: 10.1093/qmath/20.1.129.  Google Scholar

[2]

A. Behera and G. K. Panda, On the square roots of triangular numbers, Fibonacci Quart., 37 (1999), 98-105.   Google Scholar

[3]

N. D. CahillJ. R. D'Errico and J. P. Spence, Complex factorizations of the Fibonacci and Lucas numbers, Fibonacci Quart., 41 (2003), 13-19.   Google Scholar

[4]

P. CatarinoH. Campos and P. Vasco, On some identities for balancing and cobalancing numbers, Ann. Math. Inform., 45 (2015), 11-24.   Google Scholar

[5]

L. Comtet, Advanced Combinatorics, Reidel, Dordrecht, 1974.  Google Scholar

[6]

C. Cooper, Some high degree generalized Fibonacci identities, Fibonacci Quart., 57 (2019), 42-47.   Google Scholar

[7]

L. E. Dickson, History of the Theory of Numbers, vol. I, Chelsea Publishing Company, New York, 1966.  Google Scholar

[8]

P. Fermat, Observations sur Diophante, Vol. III, de "Oeuvres de Fermat", publiées par les soins de M.M. Paul Tannery et Charles Henri, Paris, MDCCCXCI. Google Scholar

[9]

R. Frontczak, On Balancing polynomials, Applied Mathematical Sciences, 13 (2019), 57-66.  doi: 10.12988/ams.2019.812183.  Google Scholar

[10]

H. W. Gould, The Girard-Waring power sum formulas for symmetric functions and Fibonacci sequences, Fibonacci Quart., 37 (1999), 135-140.   Google Scholar

[11]

T.-X. He, Impulse response sequences and construction of number sequence identities, J. Integer Seq., 16 (2013), Article 13.8.2, 23 pp.  Google Scholar

[12]

T.-X. He, Construction of nonlinear expression for recursive number sequences, J. Math. Res. Appl., 35 (2015), 473-483.   Google Scholar

[13]

T.-X. He and L. W. Shapiro, Row sums and alternating sums of Riordan arrays, Linear Algebra Appl., 507 (2016), 77-95.  doi: 10.1016/j.laa.2016.05.035.  Google Scholar

[14]

T.-X. He and P. J.-S. Shiue, On sequences of numbers and polynomials defined by linear recurrence relations of order $2$, Int. J. Math. Math. Sci., 2009, Art. ID 709386, 21 pp. doi: 10.1155/2009/709386.  Google Scholar

[15]

T.-X. He and P. J.-S. Shiue, On the applications of the Girard-Waring identities, J. Comput. Anal. Appl., 28 (2020), 698-708.   Google Scholar

[16]

T.-X. HeP. J.-S. ShiueZ. Nie and M. Chen, Recursive sequences and Girard-Waring identities with applications in sequence transformation, Electron. Res. Arch., 28 (2020), 1049-1062.  doi: 10.3934/era.2020057.  Google Scholar

[17]

T.-X. HeP. J.-S. Shiue and T.-W. Weng, Hyperbolic expressions of polynomial sequences and parametric number sequences defined by linear recurrence relations of order 2., J. Concr. Appl. Math., 12 (2014), 63-85.   Google Scholar

[18]

T. L. Heath, Diophantus of Alexandria. A Study on the History of Greek Algebra, 2nd ed., Dover Publ., Inc., New York, 1964.  Google Scholar

[19]

V. E. Hoggatt and G. E. Bergum, Autorreferat of "A problem of Fermat and the Fibonacci sequence", Fibonacci Quart., 15 (1977), 323-330.   Google Scholar

[20]

A. F. Horadam, Generalization of a result of Morgado, Portugaliae Math., 44 (1987), 131-136.   Google Scholar

[21]

A. F. Horadam, Vieta polynomials, A special tribute to Calvin T. Long, Fibonacci Quart., 40 (2002), 223-232.   Google Scholar

[22]

A. F. Horadam and J. M. Mahon, Pell and Pell-Lucas polynomials, Fibonacci Quart., 23 (1985), 7-20.   Google Scholar

[23]

R. Lidl, G. L. Mullen and G. Turnwald, Dickson polynomials, Pitman Monographs and Surveys in Pure and Applied Mathematics, 65. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993.  Google Scholar

[24]

R. S. Melham and A. G. Shannon, A generalization of the Catalan identity and some consequences, Fibonacci Quart., 33 (1995), 82-84.   Google Scholar

[25]

J. Morgado, Generalization of a result of Hoggatt and Bergum on Fibonacci numbers, Portugaliae Math., 42 (1983-1984), 441-445.   Google Scholar

[26]

J. Morgado, Note on the Chebyshev polynomials and applications to the Fibonacci numbers, Portugal. Math., 52 (1995), 363-378.   Google Scholar

[27]

OEIS, The on-line encyclopedia of integer sequences, 2020, published electronically at http://oeis.org. Google Scholar

[28]

P. K. Ray, On the properties of k-balancing numbers, Ain Shams Engineering J., 9 (2018), 395-402.  doi: 10.1016/j.asej.2016.01.014.  Google Scholar

[29]

P. K. Ray, Application of Chybeshev polynomials in factorizations of balancing and Lucas-balancing numbers, Bol. Soc. Parana. Mat. (3), 30 (2012), 49-56.  doi: 10.5269/bspm.v30i2.12714.  Google Scholar

[30]

G. Udrea, Catalan's identity and Chebyshev polynomials of the second kind, Portugal. Math., 52 (1995), 391-397.   Google Scholar

[31]

G. Udrea, A problem of Diophantos-Fermat and Chebyshev polynomials of the second kind, Portugal. Math., 52 (1995), 301-304.   Google Scholar

[32]

N. G. Voll, The Cassini identity and its relatives, Fibonacci Quart., 48 (2010), 197-201.   Google Scholar

[33]

D. Zwillinger, (Ed.) CRC Standard Mathematical Tables and Formulae, Boca Raton, FL: CRC Press, 2012.  Google Scholar

show all references

References:
[1]

A. Baker and H. Davenport, The equations $3x^{2}-2 = y^{2}$ and $8x^{2}-7 = z^{2}$, Quart. J. Math. Oxford Ser., 20 (1969), 129-137.  doi: 10.1093/qmath/20.1.129.  Google Scholar

[2]

A. Behera and G. K. Panda, On the square roots of triangular numbers, Fibonacci Quart., 37 (1999), 98-105.   Google Scholar

[3]

N. D. CahillJ. R. D'Errico and J. P. Spence, Complex factorizations of the Fibonacci and Lucas numbers, Fibonacci Quart., 41 (2003), 13-19.   Google Scholar

[4]

P. CatarinoH. Campos and P. Vasco, On some identities for balancing and cobalancing numbers, Ann. Math. Inform., 45 (2015), 11-24.   Google Scholar

[5]

L. Comtet, Advanced Combinatorics, Reidel, Dordrecht, 1974.  Google Scholar

[6]

C. Cooper, Some high degree generalized Fibonacci identities, Fibonacci Quart., 57 (2019), 42-47.   Google Scholar

[7]

L. E. Dickson, History of the Theory of Numbers, vol. I, Chelsea Publishing Company, New York, 1966.  Google Scholar

[8]

P. Fermat, Observations sur Diophante, Vol. III, de "Oeuvres de Fermat", publiées par les soins de M.M. Paul Tannery et Charles Henri, Paris, MDCCCXCI. Google Scholar

[9]

R. Frontczak, On Balancing polynomials, Applied Mathematical Sciences, 13 (2019), 57-66.  doi: 10.12988/ams.2019.812183.  Google Scholar

[10]

H. W. Gould, The Girard-Waring power sum formulas for symmetric functions and Fibonacci sequences, Fibonacci Quart., 37 (1999), 135-140.   Google Scholar

[11]

T.-X. He, Impulse response sequences and construction of number sequence identities, J. Integer Seq., 16 (2013), Article 13.8.2, 23 pp.  Google Scholar

[12]

T.-X. He, Construction of nonlinear expression for recursive number sequences, J. Math. Res. Appl., 35 (2015), 473-483.   Google Scholar

[13]

T.-X. He and L. W. Shapiro, Row sums and alternating sums of Riordan arrays, Linear Algebra Appl., 507 (2016), 77-95.  doi: 10.1016/j.laa.2016.05.035.  Google Scholar

[14]

T.-X. He and P. J.-S. Shiue, On sequences of numbers and polynomials defined by linear recurrence relations of order $2$, Int. J. Math. Math. Sci., 2009, Art. ID 709386, 21 pp. doi: 10.1155/2009/709386.  Google Scholar

[15]

T.-X. He and P. J.-S. Shiue, On the applications of the Girard-Waring identities, J. Comput. Anal. Appl., 28 (2020), 698-708.   Google Scholar

[16]

T.-X. HeP. J.-S. ShiueZ. Nie and M. Chen, Recursive sequences and Girard-Waring identities with applications in sequence transformation, Electron. Res. Arch., 28 (2020), 1049-1062.  doi: 10.3934/era.2020057.  Google Scholar

[17]

T.-X. HeP. J.-S. Shiue and T.-W. Weng, Hyperbolic expressions of polynomial sequences and parametric number sequences defined by linear recurrence relations of order 2., J. Concr. Appl. Math., 12 (2014), 63-85.   Google Scholar

[18]

T. L. Heath, Diophantus of Alexandria. A Study on the History of Greek Algebra, 2nd ed., Dover Publ., Inc., New York, 1964.  Google Scholar

[19]

V. E. Hoggatt and G. E. Bergum, Autorreferat of "A problem of Fermat and the Fibonacci sequence", Fibonacci Quart., 15 (1977), 323-330.   Google Scholar

[20]

A. F. Horadam, Generalization of a result of Morgado, Portugaliae Math., 44 (1987), 131-136.   Google Scholar

[21]

A. F. Horadam, Vieta polynomials, A special tribute to Calvin T. Long, Fibonacci Quart., 40 (2002), 223-232.   Google Scholar

[22]

A. F. Horadam and J. M. Mahon, Pell and Pell-Lucas polynomials, Fibonacci Quart., 23 (1985), 7-20.   Google Scholar

[23]

R. Lidl, G. L. Mullen and G. Turnwald, Dickson polynomials, Pitman Monographs and Surveys in Pure and Applied Mathematics, 65. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993.  Google Scholar

[24]

R. S. Melham and A. G. Shannon, A generalization of the Catalan identity and some consequences, Fibonacci Quart., 33 (1995), 82-84.   Google Scholar

[25]

J. Morgado, Generalization of a result of Hoggatt and Bergum on Fibonacci numbers, Portugaliae Math., 42 (1983-1984), 441-445.   Google Scholar

[26]

J. Morgado, Note on the Chebyshev polynomials and applications to the Fibonacci numbers, Portugal. Math., 52 (1995), 363-378.   Google Scholar

[27]

OEIS, The on-line encyclopedia of integer sequences, 2020, published electronically at http://oeis.org. Google Scholar

[28]

P. K. Ray, On the properties of k-balancing numbers, Ain Shams Engineering J., 9 (2018), 395-402.  doi: 10.1016/j.asej.2016.01.014.  Google Scholar

[29]

P. K. Ray, Application of Chybeshev polynomials in factorizations of balancing and Lucas-balancing numbers, Bol. Soc. Parana. Mat. (3), 30 (2012), 49-56.  doi: 10.5269/bspm.v30i2.12714.  Google Scholar

[30]

G. Udrea, Catalan's identity and Chebyshev polynomials of the second kind, Portugal. Math., 52 (1995), 391-397.   Google Scholar

[31]

G. Udrea, A problem of Diophantos-Fermat and Chebyshev polynomials of the second kind, Portugal. Math., 52 (1995), 301-304.   Google Scholar

[32]

N. G. Voll, The Cassini identity and its relatives, Fibonacci Quart., 48 (2010), 197-201.   Google Scholar

[33]

D. Zwillinger, (Ed.) CRC Standard Mathematical Tables and Formulae, Boca Raton, FL: CRC Press, 2012.  Google Scholar

[1]

Takao Komatsu, Bijan Kumar Patel, Claudio Pita-Ruiz. Several formulas for Bernoulli numbers and polynomials. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021006

[2]

Koh Katagata. On a certain kind of polynomials of degree 4 with disconnected Julia set. Discrete & Continuous Dynamical Systems, 2008, 20 (4) : 975-987. doi: 10.3934/dcds.2008.20.975

[3]

Alexandre Alves, Mostafa Salarinoghabi. On the family of cubic parabolic polynomials. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021121

[4]

Jayadev S. Athreya, Gregory A. Margulis. Values of random polynomials at integer points. Journal of Modern Dynamics, 2018, 12: 9-16. doi: 10.3934/jmd.2018002

[5]

Michael Boshernitzan, Máté Wierdl. Almost-everywhere convergence and polynomials. Journal of Modern Dynamics, 2008, 2 (3) : 465-470. doi: 10.3934/jmd.2008.2.465

[6]

Elisavet Konstantinou, Aristides Kontogeorgis. Some remarks on the construction of class polynomials. Advances in Mathematics of Communications, 2011, 5 (1) : 109-118. doi: 10.3934/amc.2011.5.109

[7]

Shrihari Sridharan, Atma Ram Tiwari. The dependence of Lyapunov exponents of polynomials on their coefficients. Journal of Computational Dynamics, 2019, 6 (1) : 95-109. doi: 10.3934/jcd.2019004

[8]

Bin Han. Some multivariate polynomials for doubled permutations. Electronic Research Archive, 2021, 29 (2) : 1925-1944. doi: 10.3934/era.2020098

[9]

Nathaniel D. Emerson. Dynamics of polynomials with disconnected Julia sets. Discrete & Continuous Dynamical Systems, 2003, 9 (4) : 801-834. doi: 10.3934/dcds.2003.9.801

[10]

Abdon E. Choque-Rivero, Iván Area. A Favard type theorem for Hurwitz polynomials. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 529-544. doi: 10.3934/dcdsb.2019252

[11]

Zainidin Eshkuvatov. Homotopy perturbation method and Chebyshev polynomials for solving a class of singular and hypersingular integral equations. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 337-350. doi: 10.3934/naco.2018022

[12]

Janos Kollar. Polynomials with integral coefficients, equivalent to a given polynomial. Electronic Research Announcements, 1997, 3: 17-27.

[13]

Matthieu Arfeux, Jan Kiwi. Topological cubic polynomials with one periodic ramification point. Discrete & Continuous Dynamical Systems, 2020, 40 (3) : 1799-1811. doi: 10.3934/dcds.2020094

[14]

Nur Fadhilah Ibrahim. An algorithm for the largest eigenvalue of nonhomogeneous nonnegative polynomials. Numerical Algebra, Control & Optimization, 2014, 4 (1) : 75-91. doi: 10.3934/naco.2014.4.75

[15]

Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001

[16]

Anca Radulescu. The connected Isentropes conjecture in a space of quartic polynomials. Discrete & Continuous Dynamical Systems, 2007, 19 (1) : 139-175. doi: 10.3934/dcds.2007.19.139

[17]

Jean-François Biasse, Michael J. Jacobson, Jr.. Smoothness testing of polynomials over finite fields. Advances in Mathematics of Communications, 2014, 8 (4) : 459-477. doi: 10.3934/amc.2014.8.459

[18]

Ricardo García López. A note on L-series and Hodge spectrum of polynomials. Electronic Research Announcements, 2009, 16: 56-62. doi: 10.3934/era.2009.16.56

[19]

Vladimir Dragović, Katarina Kukić. Discriminantly separable polynomials and quad-equations. Journal of Geometric Mechanics, 2014, 6 (3) : 319-333. doi: 10.3934/jgm.2014.6.319

[20]

Domingo González, Gamaliel Blé. Core entropy of polynomials with a critical point of maximal order. Discrete & Continuous Dynamical Systems, 2019, 39 (1) : 115-130. doi: 10.3934/dcds.2019005

2020 Impact Factor: 1.833

Metrics

  • PDF downloads (51)
  • HTML views (90)
  • Cited by (0)

Other articles
by authors

[Back to Top]