doi: 10.3934/era.2021054
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

A simple virtual element-based flux recovery on quadtree

Department of Mathematics and Statistics, Washington University in St. Louis, St. Louis, MO 63105, USA

* Corresponding author: Shuhao Cao

Received  November 2020 Revised  June 2021 Early access July 2021

Fund Project: The first author is supported in part by NSF grants DMS-1913080 and DMS-2136075

In this paper, we introduce a simple local flux recovery for $ \mathcal{Q}_k $ finite element of a scalar coefficient diffusion equation on quadtree meshes, with no restriction on the irregularities of hanging nodes. The construction requires no specific ad hoc tweaking for hanging nodes on $ l $-irregular ($ l\geq 2 $) meshes thanks to the adoption of virtual element families. The rectangular elements with hanging nodes are treated as polygons as in the flux recovery context. An efficient a posteriori error estimator is then constructed based on the recovered flux, and its reliability is proved under common assumptions, both of which are further verified in numerics.

Citation: Shuhao Cao. A simple virtual element-based flux recovery on quadtree. Electronic Research Archive, doi: 10.3934/era.2021054
References:
[1]

R. AndersonJ. AndrejA. BarkerJ. BramwellJ.-S. CamierJ. C. V. DobrevY. DudouitA. FisherT. KolevW. PaznerM. StowellV. TomovI. AkkermanJ. DahmD. Medina and S. Zampini, MFEM: A modular finite element library, Computers & Mathematics with Applications, 81 (2021), 42-74.   Google Scholar

[2]

W. Bangerth, R. Hartmann and G. Kanschat, deal.II - a general purpose object oriented finite element library, ACM Trans. Math. Software, 33 (2007), Art. 24, 27 pp. doi: 10.1145/1268776.1268779.  Google Scholar

[3]

R. E. Bank and J. Xu, Asymptotically exact a posteriori error estimators, part ii: General unstructured grids, SIAM J. Numer. Anal., 41 (2003), 2313-2332.  doi: 10.1137/S0036142901398751.  Google Scholar

[4]

L. Beirão da VeigaF. BrezziA. CangianiG. ManziniL. D. Marini and A. Russo, Basic principles of virtual element methods, Mathematical Models and Methods in Applied Sciences, 23 (2013), 199-214.  doi: 10.1142/S0218202512500492.  Google Scholar

[5]

L. Beirão da VeigaF. BrezziL. D. Marini and A. Russo, Serendipity face and edge VEM spaces, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 28 (2017), 143-180.  doi: 10.4171/RLM/756.  Google Scholar

[6]

C. Bernardi and R. Verfürth, Adaptive finite element methods for elliptic equations with non-smooth coefficient, Numer. Math., 85 (2000), 579-608.  doi: 10.1007/PL00005393.  Google Scholar

[7]

S. Berrone and A. Borio, Orthogonal polynomials in badly shaped polygonal elements for the virtual element method, Finite Elem. Anal. Des., 129 (2017), 14-31.  doi: 10.1016/j.finel.2017.01.006.  Google Scholar

[8]

F. BrezziR. S. Falk and L. D. Marini, Basic principles of mixed virtual element methods, ESAIM Math. Model. Numer. Anal., 48 (2014), 1227-1240.  doi: 10.1051/m2an/2013138.  Google Scholar

[9]

R. Bruce Kellogg, On the Poisson equation with intersecting interfaces, Applicable Anal., 4 (1974), 101-129.  doi: 10.1080/00036817408839086.  Google Scholar

[10]

Z. Cai and S. Cao, A recovery-based a posteriori error estimator for H(curl) interface problems, Comput. Methods in Appl. Mech. Eng., 296 (2015), 169-195.  doi: 10.1016/j.cma.2015.08.002.  Google Scholar

[11]

Z. Cai and S. Zhang, Recovery-based error estimators for interface problems: conforming linear elements, SIAM J. Numer. Anal., 47 (2009), 2132-2156.  doi: 10.1137/080717407.  Google Scholar

[12]

A. CangianiE. H. GeorgoulisT. Pryer and O. J. Sutton, A posteriori error estimates for the virtual element method, Numer. Math., 137 (2017), 857-893.  doi: 10.1007/s00211-017-0891-9.  Google Scholar

[13]

S. Cao and L. Chen, Anisotropic error estimates of the linear nonconforming virtual element methods, SIAM J. Numer. Anal., 57 (2019), 1058-1081.  doi: 10.1137/18M1196455.  Google Scholar

[14]

C. Carstensen and J. Hu, Hanging nodes in the unifying theory of a posteriori finite element error control, J. Comput. Math., 27 (2009), 215-236.   Google Scholar

[15]

J. Červený, V. Dobrev and T. Kolev, Nonconforming mesh refinement for high-order finite elements, SIAM J. Sci. Comput., 41 (2019), C367-C392. doi: 10.1137/18M1193992.  Google Scholar

[16]

L. Chen, iFEM: An Innovative Finite Element Methods Package in MATLAB, Technical report, 2008, URLhttps://github.com/lyc102/ifem. Google Scholar

[17]

Z. Chen and S. Dai, On the efficiency of adaptive finite element methods for elliptic problems with discontinuous coefficients, SIAM J. Sci. Comput., 24 (2002), 443-462.  doi: 10.1137/S1064827501383713.  Google Scholar

[18]

H. ChiL. Beirão da Veiga and G. H. Paulino, A simple and effective gradient recovery scheme and a posteriori error estimator for the virtual element method (VEM), Comput. Methods Appl. Mech. Engrg., 347 (2019), 21-58.  doi: 10.1016/j.cma.2018.08.014.  Google Scholar

[19]

F. Dassi, J. Gedicke and L. Mascotto, Adaptive virtual element methods with equilibrated fluxes, arXiv preprint, arXiv: 2004.11220. Google Scholar

[20]

L. DemkowiczJ. T. OdenW. Rachowicz and O. Hardy, Toward a universal hp adaptive finite element strategy, part 1. constrained approximation and data structure, Comput. Methods Appl. Mech. Engrg., 77 (1989), 79-112.  doi: 10.1016/0045-7825(89)90129-1.  Google Scholar

[21]

P. Di StolfoA. SchröderN. Zander and S. Kollmannsberger, An easy treatment of hanging nodes in $hp$-finite elements, Finite Elem. Anal. Des., 121 (2016), 101-117.  doi: 10.1016/j.finel.2016.07.001.  Google Scholar

[22]

A. Ern and M. Vohralík, Flux reconstruction and a posteriori error estimation for discontinuous Galerkin methods on general nonmatching grids, C. R. Math. Acad. Sci. Paris, 347 (2009), 441-444.  doi: 10.1016/j.crma.2009.01.017.  Google Scholar

[23]

V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer-Verlag, 1986. doi: 10.1007/978-3-642-61623-5.  Google Scholar

[24]

H. GuoC. Xie and R. Zhao, Superconvergent gradient recovery for virtual element methods, Math. Models Methods Appl. Sci., 29 (2019), 2007-2031.  doi: 10.1142/S0218202519500386.  Google Scholar

[25]

L. Mascotto, Ill-conditioning in the virtual element method: Stabilizations and bases, Numer. Methods Partial Differential Equations, 34 (2018), 1258-1281.  doi: 10.1002/num.22257.  Google Scholar

[26]

P. ŠolínJ. Červenỳ and I. Doležel, Arbitrary-level hanging nodes and automatic adaptivity in the $hp$-FEM, Math. Comput. Simulation, 77 (2008), 117-132.  doi: 10.1016/j.matcom.2007.02.011.  Google Scholar

[27]

R. Verfürth, Error estimates for some quasi-interpolation operators, M2AN Math. Model. Numer. Anal., 33 (1999), 695-713.  doi: 10.1051/m2an:1999158.  Google Scholar

[28]

O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery and a posteriori error estimates. part 1: The recovery technique, Internat. J. Numer. Methods Engrg., 33 (1992), 1331-1364.  doi: 10.1002/nme.1620330702.  Google Scholar

show all references

References:
[1]

R. AndersonJ. AndrejA. BarkerJ. BramwellJ.-S. CamierJ. C. V. DobrevY. DudouitA. FisherT. KolevW. PaznerM. StowellV. TomovI. AkkermanJ. DahmD. Medina and S. Zampini, MFEM: A modular finite element library, Computers & Mathematics with Applications, 81 (2021), 42-74.   Google Scholar

[2]

W. Bangerth, R. Hartmann and G. Kanschat, deal.II - a general purpose object oriented finite element library, ACM Trans. Math. Software, 33 (2007), Art. 24, 27 pp. doi: 10.1145/1268776.1268779.  Google Scholar

[3]

R. E. Bank and J. Xu, Asymptotically exact a posteriori error estimators, part ii: General unstructured grids, SIAM J. Numer. Anal., 41 (2003), 2313-2332.  doi: 10.1137/S0036142901398751.  Google Scholar

[4]

L. Beirão da VeigaF. BrezziA. CangianiG. ManziniL. D. Marini and A. Russo, Basic principles of virtual element methods, Mathematical Models and Methods in Applied Sciences, 23 (2013), 199-214.  doi: 10.1142/S0218202512500492.  Google Scholar

[5]

L. Beirão da VeigaF. BrezziL. D. Marini and A. Russo, Serendipity face and edge VEM spaces, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 28 (2017), 143-180.  doi: 10.4171/RLM/756.  Google Scholar

[6]

C. Bernardi and R. Verfürth, Adaptive finite element methods for elliptic equations with non-smooth coefficient, Numer. Math., 85 (2000), 579-608.  doi: 10.1007/PL00005393.  Google Scholar

[7]

S. Berrone and A. Borio, Orthogonal polynomials in badly shaped polygonal elements for the virtual element method, Finite Elem. Anal. Des., 129 (2017), 14-31.  doi: 10.1016/j.finel.2017.01.006.  Google Scholar

[8]

F. BrezziR. S. Falk and L. D. Marini, Basic principles of mixed virtual element methods, ESAIM Math. Model. Numer. Anal., 48 (2014), 1227-1240.  doi: 10.1051/m2an/2013138.  Google Scholar

[9]

R. Bruce Kellogg, On the Poisson equation with intersecting interfaces, Applicable Anal., 4 (1974), 101-129.  doi: 10.1080/00036817408839086.  Google Scholar

[10]

Z. Cai and S. Cao, A recovery-based a posteriori error estimator for H(curl) interface problems, Comput. Methods in Appl. Mech. Eng., 296 (2015), 169-195.  doi: 10.1016/j.cma.2015.08.002.  Google Scholar

[11]

Z. Cai and S. Zhang, Recovery-based error estimators for interface problems: conforming linear elements, SIAM J. Numer. Anal., 47 (2009), 2132-2156.  doi: 10.1137/080717407.  Google Scholar

[12]

A. CangianiE. H. GeorgoulisT. Pryer and O. J. Sutton, A posteriori error estimates for the virtual element method, Numer. Math., 137 (2017), 857-893.  doi: 10.1007/s00211-017-0891-9.  Google Scholar

[13]

S. Cao and L. Chen, Anisotropic error estimates of the linear nonconforming virtual element methods, SIAM J. Numer. Anal., 57 (2019), 1058-1081.  doi: 10.1137/18M1196455.  Google Scholar

[14]

C. Carstensen and J. Hu, Hanging nodes in the unifying theory of a posteriori finite element error control, J. Comput. Math., 27 (2009), 215-236.   Google Scholar

[15]

J. Červený, V. Dobrev and T. Kolev, Nonconforming mesh refinement for high-order finite elements, SIAM J. Sci. Comput., 41 (2019), C367-C392. doi: 10.1137/18M1193992.  Google Scholar

[16]

L. Chen, iFEM: An Innovative Finite Element Methods Package in MATLAB, Technical report, 2008, URLhttps://github.com/lyc102/ifem. Google Scholar

[17]

Z. Chen and S. Dai, On the efficiency of adaptive finite element methods for elliptic problems with discontinuous coefficients, SIAM J. Sci. Comput., 24 (2002), 443-462.  doi: 10.1137/S1064827501383713.  Google Scholar

[18]

H. ChiL. Beirão da Veiga and G. H. Paulino, A simple and effective gradient recovery scheme and a posteriori error estimator for the virtual element method (VEM), Comput. Methods Appl. Mech. Engrg., 347 (2019), 21-58.  doi: 10.1016/j.cma.2018.08.014.  Google Scholar

[19]

F. Dassi, J. Gedicke and L. Mascotto, Adaptive virtual element methods with equilibrated fluxes, arXiv preprint, arXiv: 2004.11220. Google Scholar

[20]

L. DemkowiczJ. T. OdenW. Rachowicz and O. Hardy, Toward a universal hp adaptive finite element strategy, part 1. constrained approximation and data structure, Comput. Methods Appl. Mech. Engrg., 77 (1989), 79-112.  doi: 10.1016/0045-7825(89)90129-1.  Google Scholar

[21]

P. Di StolfoA. SchröderN. Zander and S. Kollmannsberger, An easy treatment of hanging nodes in $hp$-finite elements, Finite Elem. Anal. Des., 121 (2016), 101-117.  doi: 10.1016/j.finel.2016.07.001.  Google Scholar

[22]

A. Ern and M. Vohralík, Flux reconstruction and a posteriori error estimation for discontinuous Galerkin methods on general nonmatching grids, C. R. Math. Acad. Sci. Paris, 347 (2009), 441-444.  doi: 10.1016/j.crma.2009.01.017.  Google Scholar

[23]

V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer-Verlag, 1986. doi: 10.1007/978-3-642-61623-5.  Google Scholar

[24]

H. GuoC. Xie and R. Zhao, Superconvergent gradient recovery for virtual element methods, Math. Models Methods Appl. Sci., 29 (2019), 2007-2031.  doi: 10.1142/S0218202519500386.  Google Scholar

[25]

L. Mascotto, Ill-conditioning in the virtual element method: Stabilizations and bases, Numer. Methods Partial Differential Equations, 34 (2018), 1258-1281.  doi: 10.1002/num.22257.  Google Scholar

[26]

P. ŠolínJ. Červenỳ and I. Doležel, Arbitrary-level hanging nodes and automatic adaptivity in the $hp$-FEM, Math. Comput. Simulation, 77 (2008), 117-132.  doi: 10.1016/j.matcom.2007.02.011.  Google Scholar

[27]

R. Verfürth, Error estimates for some quasi-interpolation operators, M2AN Math. Model. Numer. Anal., 33 (1999), 695-713.  doi: 10.1051/m2an:1999158.  Google Scholar

[28]

O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery and a posteriori error estimates. part 1: The recovery technique, Internat. J. Numer. Methods Engrg., 33 (1992), 1331-1364.  doi: 10.1002/nme.1620330702.  Google Scholar

Figure 1.  For the upper right element $ K\in \mathcal{T} $, $ \mathcal{N}_K = \{z_2, z_4, z_5, z_6\} $. For $ K\in \mathcal{T}_{\mathrm{poly}} $, $ \mathcal{N}_K = \{z_i\}_{i = 1}^7 $
Figure 2.  The result of the L-shape example. (a) The adaptively refined mesh with 1014 DoFs. (b) Convergence in Example 1
Figure 3.  The result of the circular wave front example. (a) $ u_{\mathcal{T}} $ on a 3-irregular mesh with $ \# \mathrm{DoFs} = 1996 $, the relative error is $ 14.3\% $. (b) Convergence in Example 2
Figure 4.  Comparison of the adaptively refined meshes. (a) 1-irregular mesh, $ \# \mathrm{DoFs} = 1083 $, the relative error is $ 21.8\% $. (b) 4-irregular mesh, and $ \# \mathrm{DoFs} = 1000 $, the relative error is $ 17.8\% $
17,Section 4]). (b) The finite element approximation with $ \# \mathrm{DoFs} = 1736 $">Figure 5.  The result of the Kellogg example. (a) The adaptively refined mesh with $ \# \mathrm{DoFs} = 2001 $ on which the energy error is $ 0.0753 $, this number is roughly $ 75\% $ of the number of DoFs needed to achieve the same accuracy if using conforming linear finite element on triangular grid (see [17,Section 4]). (b) The finite element approximation with $ \# \mathrm{DoFs} = 1736 $
Figure 6.  The convergence result of the Kellogg example
[1]

Nahid Banihashemi, C. Yalçın Kaya. Inexact restoration and adaptive mesh refinement for optimal control. Journal of Industrial & Management Optimization, 2014, 10 (2) : 521-542. doi: 10.3934/jimo.2014.10.521

[2]

Luís Tiago Paiva, Fernando A. C. C. Fontes. Adaptive time--mesh refinement in optimal control problems with state constraints. Discrete & Continuous Dynamical Systems, 2015, 35 (9) : 4553-4572. doi: 10.3934/dcds.2015.35.4553

[3]

Luís Tiago Paiva, Fernando A. C. C. Fontes. Sampled–data model predictive control: Adaptive time–mesh refinement algorithms and guarantees of stability. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2335-2364. doi: 10.3934/dcdsb.2019098

[4]

Hengguang Li, Jeffrey S. Ovall. A posteriori eigenvalue error estimation for a Schrödinger operator with inverse square potential. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1377-1391. doi: 10.3934/dcdsb.2015.20.1377

[5]

So-Hsiang Chou. An immersed linear finite element method with interface flux capturing recovery. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2343-2357. doi: 10.3934/dcdsb.2012.17.2343

[6]

Hatim Tayeq, Amal Bergam, Anouar El Harrak, Kenza Khomsi. Self-adaptive algorithm based on a posteriori analysis of the error applied to air quality forecasting using the finite volume method. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2557-2570. doi: 10.3934/dcdss.2020400

[7]

Hsueh-Chen Lee, Hyesuk Lee. An a posteriori error estimator based on least-squares finite element solutions for viscoelastic fluid flows. Electronic Research Archive, 2021, 29 (4) : 2755-2770. doi: 10.3934/era.2021012

[8]

Tao Lin, Yanping Lin, Weiwei Sun. Error estimation of a class of quadratic immersed finite element methods for elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 807-823. doi: 10.3934/dcdsb.2007.7.807

[9]

Xue Lu, Niall Adams, Nikolas Kantas. On adaptive estimation for dynamic Bernoulli bandits. Foundations of Data Science, 2019, 1 (2) : 197-225. doi: 10.3934/fods.2019009

[10]

Benedict Geihe, Martin Rumpf. A posteriori error estimates for sequential laminates in shape optimization. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1377-1392. doi: 10.3934/dcdss.2016055

[11]

Walter Allegretto, Yanping Lin, Ningning Yan. A posteriori error analysis for FEM of American options. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 957-978. doi: 10.3934/dcdsb.2006.6.957

[12]

Ben A. Vanderlei, Matthew M. Hopkins, Lisa J. Fauci. Error estimation for immersed interface solutions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1185-1203. doi: 10.3934/dcdsb.2012.17.1185

[13]

Zheng-Ru Zhang, Tao Tang. An adaptive mesh redistribution algorithm for convection-dominated problems. Communications on Pure & Applied Analysis, 2002, 1 (3) : 341-357. doi: 10.3934/cpaa.2002.1.341

[14]

Qingguang Guan. Some estimates of virtual element methods for fourth order problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2021074

[15]

M. González, J. Jansson, S. Korotov. A posteriori error analysis of a stabilized mixed FEM for convection-diffusion problems. Conference Publications, 2015, 2015 (special) : 525-532. doi: 10.3934/proc.2015.0525

[16]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[17]

Youjun Deng, Hongyu Liu, Xianchao Wang, Dong Wei, Liyan Zhu. Simultaneous recovery of surface heat flux and thickness of a solid structure by ultrasonic measurements. Electronic Research Archive, , () : -. doi: 10.3934/era.2021027

[18]

Zhong-Ci Shi, Xuejun Xu, Zhimin Zhang. The patch recovery for finite element approximation of elasticity problems under quadrilateral meshes. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 163-182. doi: 10.3934/dcdsb.2008.9.163

[19]

Peter Frolkovič, Karol Mikula, Jooyoung Hahn, Dirk Martin, Branislav Basara. Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 865-879. doi: 10.3934/dcdss.2020350

[20]

Lili Ju, Wensong Wu, Weidong Zhao. Adaptive finite volume methods for steady convection-diffusion equations with mesh optimization. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 669-690. doi: 10.3934/dcdsb.2009.11.669

2020 Impact Factor: 1.833

Article outline

Figures and Tables

[Back to Top]