doi: 10.3934/era.2021056
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Regularity of Wong-Zakai approximation for non-autonomous stochastic quasi-linear parabolic equation on $ {\mathbb{R}}^N $

1. 

Chongqing Key Laboratory of Social Economy and Applied Statistics, School of Mathematics and Statistics

2. 

Chongqing Technology and Business University, Chongqing 400067, China

* Corresponding author: Wenqiang Zhao

Received  January 2021 Revised  June 2021 Early access August 2021

Fund Project: The second author was supported by NSF grant 11871122, Chongqing NSF Grant cstc2019jcyj-msxmX0115 and CTBU Grant (KFJJ2018101, ZDPTTD201909)

In this paper, we investigate a non-autonomous stochastic quasi-linear parabolic equation driven by multiplicative white noise by a Wong-Zakai approximation technique. The convergence of the solutions of quasi-linear parabolic equations driven by a family of processes with stationary increment to that of stochastic differential equation with white noise is obtained in the topology of $ L^2( {\mathbb{R}}^N) $ space. We establish the Wong-Zakai approximations of solutions in $ L^l( {\mathbb{R}}^N) $ for arbitrary $ l\geq q $ in the sense of upper semi-continuity of their random attractors, where $ q $ is the growth exponent of the nonlinearity. The $ L^l $-pre-compactness of attractors is proved by using the truncation estimate in $ L^q $ and the higher-order bound of solutions.

Citation: Guifen Liu, Wenqiang Zhao. Regularity of Wong-Zakai approximation for non-autonomous stochastic quasi-linear parabolic equation on $ {\mathbb{R}}^N $. Electronic Research Archive, doi: 10.3934/era.2021056
References:
[1]

L. Arnold, Random Dynamical System, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[2]

J. M. ArrietaJ. C. Nakasato and M. C. Pereira, The $p$-Laplacian equation in thin domains: The unfolding approach, J. Differential Equations, 274 (2021), 1-34.  doi: 10.1016/j.jde.2020.12.004.  Google Scholar

[3]

Z. BrzeźniakU. Manna and D. Mukherjee, Wong-Zakai approximations for stochastic Landau-Lifshitz-Gilbert equations, J. Differential Equations, 267 (2019), 776-825.  doi: 10.1016/j.jde.2019.01.025.  Google Scholar

[4]

O. Calin, An Informal Introduction to Stochastic Calculus with Applications, World Scientific Publishing: Singapore, 2015. doi: 10.1142/9620.  Google Scholar

[5]

T. Caraballo and J. A. Langa, Comparison of the long-time behavior of linear Itô and Stratonovich partial differential equations, Stochastic Anal. Appl., 19 (2001), 183-195.  doi: 10.1081/SAP-100000758.  Google Scholar

[6]

T. Caraballo and J. C. Robinson, Stabilisation of linear PDFs by Stratonovich noise, Systems Control Lett., 53 (2004), 41-50.  doi: 10.1016/j.sysconle.2004.02.020.  Google Scholar

[7]

Y.-H. Cheng, Reconstruction and stability of inverse nodal problems for energy-dependent $p$-Laplacian equations, J. Math. Anal. Appl., 491 (2020), 124388, 16 pp. doi: 10.1016/j.jmaa.2020.124388.  Google Scholar

[8]

S.-Y. Chung and J. Hwang, A complete characterization of Fujita's blow-up solutions for discrete $p$-Laplacian parabolic equations under the mixed boundary conditions on networks, J. Math. Anal. Appl., 497 (2021), 124859, 21 pp doi: 10.1016/j.jmaa.2020.124859.  Google Scholar

[9]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.  doi: 10.1007/BF02219225.  Google Scholar

[10]

H. Crauel and F. Flandoli, Attracors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.  Google Scholar

[11]

P. G. Geredeli, On the existence of regular global attractor for $p$-Laplacian evolution equations, Appl. Math. Optim., 71 (2015), 517-532.  doi: 10.1007/s00245-014-9268-y.  Google Scholar

[12]

P. G. Geredeli and A. Khanmamedov, Long-time dynamics of the parabolic $p$-Laplacian equation, Commun. Pure Appl. Anal., 12 (2013), 735-754.  doi: 10.3934/cpaa.2013.12.735.  Google Scholar

[13]

X. Jiang and Y. Li, Wong-Zakai approximations and periodic solutions in distribution of dissipative stochastic differential equations, J. Differential Equations, 274 (2021), 652-765.  doi: 10.1016/j.jde.2020.10.022.  Google Scholar

[14]

A. Kh. Khanmamedov, Global attractors for one dimensional $p$-Laplacian equation, Nonliear Anal., 71 (2009), 155-171.  doi: 10.1016/j.na.2008.10.037.  Google Scholar

[15]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, American Mathematical Society, 2011. doi: 10.1090/surv/176.  Google Scholar

[16]

A. KrauseM. Lewis and B. Wang, Dynamics of the non-autonomous stochastic $p$-Laplace equation driven by multiplicative noise, Appl. Math. Comput., 246 (2014), 365-376.  doi: 10.1016/j.amc.2014.08.033.  Google Scholar

[17]

A. Krause and B. Wang, Pullback attractors of non-autonomous stochastic degenerate parabolic equations on unbounded domains, J. Math. Anal. Appl., 417 (2014), 1018-1038.  doi: 10.1016/j.jmaa.2014.03.037.  Google Scholar

[18]

J. Li, Y. Li and H. Cui, Existence and upper semicontinuity of random attractors of stochastic $p$-Laplacian equations on unbounded domains, Electron. J. Differential Equations, 2014 (2014), No. 87, 27 pp.  Google Scholar

[19]

Y. LiA. Gu and J. Li, Existences and continuity of bi-spatial random attractors and application to stochasitic semilinear Laplacian equations, J. Differential Equations, 258 (2015), 504-534.  doi: 10.1016/j.jde.2014.09.021.  Google Scholar

[20]

Y. Li and J. Yin, Existence, regularity and approximation of global attractors for weaky dissipative $p$-Laplacian equations, Discrete Contin. Dyn. Syst. Ser. S, 9 (2016), 1939-1957.  doi: 10.3934/dcdss.2016079.  Google Scholar

[21]

K. Lu and B. Wang, Wong-Zakai approximations and long term behavior of stochastic partial differential equations, J. Dyn. Diff. Equat., 31 (2019), 1341-1371.  doi: 10.1007/s10884-017-9626-y.  Google Scholar

[22]

U. Manna, D. Mukherjee and A. A. Panda, Wong-Zakai approximation for the stochastic Landau-Lifshitz-Gilbert equations with anisotropy energy, J. Math. Anal. Appl., 480 (2019), 123384, 13 pp. doi: 10.1016/j.jmaa.2019.123384.  Google Scholar

[23]

S. P. Sethi and J. P. Lehoczky, A comparison of the Itô and Stratonovich formulations of problems in finance, J. Economic Dynamics and Control, 3 (1981), 343-356.  doi: 10.1016/0165-1889(81)90026-9.  Google Scholar

[24]

J. ShenJ. ZhaoK. Lu and B. Wang, The Wong-Zakai approximations of invariant manifolds and foliations for stochastic evolution equations, J. Differential Equations, 266 (2019), 4568-4623.  doi: 10.1016/j.jde.2018.10.008.  Google Scholar

[25]

J. Simsen and M. S. Simsen, Existence and upper semicontinuity of global attractors for $p(x)$-Laplacian systems, J. Math. Anal. Appl., 388 (2012), 23-38.  doi: 10.1016/j.jmaa.2011.10.003.  Google Scholar

[26]

Y. Sun and H. Gao, Wong-Zakai approximations and attractors for fractional stochastic reaction-diffusion equation on the unbounded domains, J. Appl. Anal. Comput., 10 (2020), 2338-2361.  doi: 10.11948/20190215.  Google Scholar

[27]

B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms, Stoch. Dyn., 14 (2014), 1450009, 31 pp. doi: 10.1142/S0219493714500099.  Google Scholar

[28]

B. Wang, Suffcient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[29]

X. WangK. Lu and B. Wang, Wong-Zakai approximations and attractors forstochastic reaction-diffusion equations onunbounded domains, J. Differential Equations, 264 (2018), 378-424.  doi: 10.1016/j.jde.2017.09.006.  Google Scholar

[30]

E. Wong and M. Zakai, On the relation between ordinary and stochastic differentialequations, Internat. J. Engrg. Sci., 3 (1965), 213-229.  doi: 10.1016/0020-7225(65)90045-5.  Google Scholar

[31]

E. Wong and M. Zakai, On the convergence of ordinary integrals to stochastic integrals, Ann. Math. Stat., 36 (1965), 1560-1564.  doi: 10.1214/aoms/1177699916.  Google Scholar

[32]

M. Yang, C. Sun and C. Zhong, Existence of a global attractor for a $p$-Laplacian equation in $\mathbb{R}^N$, Nonlinear Anal., 66 (2007), 1-13. doi: 10.1016/j.na.2005.11.004.  Google Scholar

[33]

M. YangC. Sun and C. Zhong, Global attractor for $p$-Laplacian equation, J. Math. Anal. Appl., 327 (2007), 1130-1142.  doi: 10.1016/j.jmaa.2006.04.085.  Google Scholar

[34]

J. Yin and Y. Li, Two types of upper semi-continuity of bi-spatial attractors for non-autonomous stochastic $p$-Laplacian equations on $\mathbb{R}^N$, Math. Meth. Appl. Sci., 40 (2017), 4863-4879.   Google Scholar

[35]

W. Zhao, Random dynamics of stochastic $p$-Laplacian equations on $\mathbb{R}^N$ with an unbounded additive noise, J. Math. Anal. App., 455 (2017), 1178-1203.  doi: 10.1016/j.jmaa.2017.06.025.  Google Scholar

[36]

W. Zhao, Continuity and random dynamics of the non-autonomous stochastic FitzHugh-Nagumo system on $ {\mathbb{R}}^N$, Comput. Math. Appl., 75 (2018), 3801-3824.  doi: 10.1016/j.camwa.2018.02.031.  Google Scholar

[37]

W. Zhao, Long-time random dynamics of stochastic parabolic $p$-Laplacian equations on $\mathbb{R}^N$, Nonliner Anal., 152 (2017), 196-219.  doi: 10.1016/j.na.2017.01.004.  Google Scholar

[38]

W. Zhao, Existences and upper semi-continuity of pullback attractors in $H^1({\mathbb{R}}^N)$ for non-autonomous reaction-diffusion equations perturbed by multiplicative noise, Electronic J. Differential Equations, 2016 (2016), Paper No. 294, 28 pp.  Google Scholar

[39]

W. Zhao and Y. Zhang, High-order Wong-Zakai approximations for non-autonomous stochastic $p$-Laplacian equations on $ {\mathbb{R}}^N$, Commun. Pure Appl. Anal., 20 (2021), 243-280.  doi: 10.3934/cpaa.2020265.  Google Scholar

[40]

W. Zhao, Y. Zhang and S. Chen, Higher-orderWong-Zakai approximations of stochastic reaction-diffusion equations on $\mathbb{R}^N$, Phys. D, 401 (2020), 132147, 15 pp. doi: 10.1016/j.physd.2019.132147.  Google Scholar

show all references

References:
[1]

L. Arnold, Random Dynamical System, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.  Google Scholar

[2]

J. M. ArrietaJ. C. Nakasato and M. C. Pereira, The $p$-Laplacian equation in thin domains: The unfolding approach, J. Differential Equations, 274 (2021), 1-34.  doi: 10.1016/j.jde.2020.12.004.  Google Scholar

[3]

Z. BrzeźniakU. Manna and D. Mukherjee, Wong-Zakai approximations for stochastic Landau-Lifshitz-Gilbert equations, J. Differential Equations, 267 (2019), 776-825.  doi: 10.1016/j.jde.2019.01.025.  Google Scholar

[4]

O. Calin, An Informal Introduction to Stochastic Calculus with Applications, World Scientific Publishing: Singapore, 2015. doi: 10.1142/9620.  Google Scholar

[5]

T. Caraballo and J. A. Langa, Comparison of the long-time behavior of linear Itô and Stratonovich partial differential equations, Stochastic Anal. Appl., 19 (2001), 183-195.  doi: 10.1081/SAP-100000758.  Google Scholar

[6]

T. Caraballo and J. C. Robinson, Stabilisation of linear PDFs by Stratonovich noise, Systems Control Lett., 53 (2004), 41-50.  doi: 10.1016/j.sysconle.2004.02.020.  Google Scholar

[7]

Y.-H. Cheng, Reconstruction and stability of inverse nodal problems for energy-dependent $p$-Laplacian equations, J. Math. Anal. Appl., 491 (2020), 124388, 16 pp. doi: 10.1016/j.jmaa.2020.124388.  Google Scholar

[8]

S.-Y. Chung and J. Hwang, A complete characterization of Fujita's blow-up solutions for discrete $p$-Laplacian parabolic equations under the mixed boundary conditions on networks, J. Math. Anal. Appl., 497 (2021), 124859, 21 pp doi: 10.1016/j.jmaa.2020.124859.  Google Scholar

[9]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.  doi: 10.1007/BF02219225.  Google Scholar

[10]

H. Crauel and F. Flandoli, Attracors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.  Google Scholar

[11]

P. G. Geredeli, On the existence of regular global attractor for $p$-Laplacian evolution equations, Appl. Math. Optim., 71 (2015), 517-532.  doi: 10.1007/s00245-014-9268-y.  Google Scholar

[12]

P. G. Geredeli and A. Khanmamedov, Long-time dynamics of the parabolic $p$-Laplacian equation, Commun. Pure Appl. Anal., 12 (2013), 735-754.  doi: 10.3934/cpaa.2013.12.735.  Google Scholar

[13]

X. Jiang and Y. Li, Wong-Zakai approximations and periodic solutions in distribution of dissipative stochastic differential equations, J. Differential Equations, 274 (2021), 652-765.  doi: 10.1016/j.jde.2020.10.022.  Google Scholar

[14]

A. Kh. Khanmamedov, Global attractors for one dimensional $p$-Laplacian equation, Nonliear Anal., 71 (2009), 155-171.  doi: 10.1016/j.na.2008.10.037.  Google Scholar

[15]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, American Mathematical Society, 2011. doi: 10.1090/surv/176.  Google Scholar

[16]

A. KrauseM. Lewis and B. Wang, Dynamics of the non-autonomous stochastic $p$-Laplace equation driven by multiplicative noise, Appl. Math. Comput., 246 (2014), 365-376.  doi: 10.1016/j.amc.2014.08.033.  Google Scholar

[17]

A. Krause and B. Wang, Pullback attractors of non-autonomous stochastic degenerate parabolic equations on unbounded domains, J. Math. Anal. Appl., 417 (2014), 1018-1038.  doi: 10.1016/j.jmaa.2014.03.037.  Google Scholar

[18]

J. Li, Y. Li and H. Cui, Existence and upper semicontinuity of random attractors of stochastic $p$-Laplacian equations on unbounded domains, Electron. J. Differential Equations, 2014 (2014), No. 87, 27 pp.  Google Scholar

[19]

Y. LiA. Gu and J. Li, Existences and continuity of bi-spatial random attractors and application to stochasitic semilinear Laplacian equations, J. Differential Equations, 258 (2015), 504-534.  doi: 10.1016/j.jde.2014.09.021.  Google Scholar

[20]

Y. Li and J. Yin, Existence, regularity and approximation of global attractors for weaky dissipative $p$-Laplacian equations, Discrete Contin. Dyn. Syst. Ser. S, 9 (2016), 1939-1957.  doi: 10.3934/dcdss.2016079.  Google Scholar

[21]

K. Lu and B. Wang, Wong-Zakai approximations and long term behavior of stochastic partial differential equations, J. Dyn. Diff. Equat., 31 (2019), 1341-1371.  doi: 10.1007/s10884-017-9626-y.  Google Scholar

[22]

U. Manna, D. Mukherjee and A. A. Panda, Wong-Zakai approximation for the stochastic Landau-Lifshitz-Gilbert equations with anisotropy energy, J. Math. Anal. Appl., 480 (2019), 123384, 13 pp. doi: 10.1016/j.jmaa.2019.123384.  Google Scholar

[23]

S. P. Sethi and J. P. Lehoczky, A comparison of the Itô and Stratonovich formulations of problems in finance, J. Economic Dynamics and Control, 3 (1981), 343-356.  doi: 10.1016/0165-1889(81)90026-9.  Google Scholar

[24]

J. ShenJ. ZhaoK. Lu and B. Wang, The Wong-Zakai approximations of invariant manifolds and foliations for stochastic evolution equations, J. Differential Equations, 266 (2019), 4568-4623.  doi: 10.1016/j.jde.2018.10.008.  Google Scholar

[25]

J. Simsen and M. S. Simsen, Existence and upper semicontinuity of global attractors for $p(x)$-Laplacian systems, J. Math. Anal. Appl., 388 (2012), 23-38.  doi: 10.1016/j.jmaa.2011.10.003.  Google Scholar

[26]

Y. Sun and H. Gao, Wong-Zakai approximations and attractors for fractional stochastic reaction-diffusion equation on the unbounded domains, J. Appl. Anal. Comput., 10 (2020), 2338-2361.  doi: 10.11948/20190215.  Google Scholar

[27]

B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms, Stoch. Dyn., 14 (2014), 1450009, 31 pp. doi: 10.1142/S0219493714500099.  Google Scholar

[28]

B. Wang, Suffcient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[29]

X. WangK. Lu and B. Wang, Wong-Zakai approximations and attractors forstochastic reaction-diffusion equations onunbounded domains, J. Differential Equations, 264 (2018), 378-424.  doi: 10.1016/j.jde.2017.09.006.  Google Scholar

[30]

E. Wong and M. Zakai, On the relation between ordinary and stochastic differentialequations, Internat. J. Engrg. Sci., 3 (1965), 213-229.  doi: 10.1016/0020-7225(65)90045-5.  Google Scholar

[31]

E. Wong and M. Zakai, On the convergence of ordinary integrals to stochastic integrals, Ann. Math. Stat., 36 (1965), 1560-1564.  doi: 10.1214/aoms/1177699916.  Google Scholar

[32]

M. Yang, C. Sun and C. Zhong, Existence of a global attractor for a $p$-Laplacian equation in $\mathbb{R}^N$, Nonlinear Anal., 66 (2007), 1-13. doi: 10.1016/j.na.2005.11.004.  Google Scholar

[33]

M. YangC. Sun and C. Zhong, Global attractor for $p$-Laplacian equation, J. Math. Anal. Appl., 327 (2007), 1130-1142.  doi: 10.1016/j.jmaa.2006.04.085.  Google Scholar

[34]

J. Yin and Y. Li, Two types of upper semi-continuity of bi-spatial attractors for non-autonomous stochastic $p$-Laplacian equations on $\mathbb{R}^N$, Math. Meth. Appl. Sci., 40 (2017), 4863-4879.   Google Scholar

[35]

W. Zhao, Random dynamics of stochastic $p$-Laplacian equations on $\mathbb{R}^N$ with an unbounded additive noise, J. Math. Anal. App., 455 (2017), 1178-1203.  doi: 10.1016/j.jmaa.2017.06.025.  Google Scholar

[36]

W. Zhao, Continuity and random dynamics of the non-autonomous stochastic FitzHugh-Nagumo system on $ {\mathbb{R}}^N$, Comput. Math. Appl., 75 (2018), 3801-3824.  doi: 10.1016/j.camwa.2018.02.031.  Google Scholar

[37]

W. Zhao, Long-time random dynamics of stochastic parabolic $p$-Laplacian equations on $\mathbb{R}^N$, Nonliner Anal., 152 (2017), 196-219.  doi: 10.1016/j.na.2017.01.004.  Google Scholar

[38]

W. Zhao, Existences and upper semi-continuity of pullback attractors in $H^1({\mathbb{R}}^N)$ for non-autonomous reaction-diffusion equations perturbed by multiplicative noise, Electronic J. Differential Equations, 2016 (2016), Paper No. 294, 28 pp.  Google Scholar

[39]

W. Zhao and Y. Zhang, High-order Wong-Zakai approximations for non-autonomous stochastic $p$-Laplacian equations on $ {\mathbb{R}}^N$, Commun. Pure Appl. Anal., 20 (2021), 243-280.  doi: 10.3934/cpaa.2020265.  Google Scholar

[40]

W. Zhao, Y. Zhang and S. Chen, Higher-orderWong-Zakai approximations of stochastic reaction-diffusion equations on $\mathbb{R}^N$, Phys. D, 401 (2020), 132147, 15 pp. doi: 10.1016/j.physd.2019.132147.  Google Scholar

[1]

Anhui Gu. Asymptotic behavior of random lattice dynamical systems and their Wong-Zakai approximations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5737-5767. doi: 10.3934/dcdsb.2019104

[2]

Dingshi Li, Xiaohu Wang, Junyilang Zhao. Limiting dynamical behavior of random fractional FitzHugh-Nagumo systems driven by a Wong-Zakai approximation process. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2751-2776. doi: 10.3934/cpaa.2020120

[3]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[4]

Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210

[5]

Xingni Tan, Fuqi Yin, Guihong Fan. Random exponential attractor for stochastic discrete long wave-short wave resonance equation with multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 3153-3170. doi: 10.3934/dcdsb.2020055

[6]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[7]

Junyi Tu, Yuncheng You. Random attractor of stochastic Brusselator system with multiplicative noise. Discrete & Continuous Dynamical Systems, 2016, 36 (5) : 2757-2779. doi: 10.3934/dcds.2016.36.2757

[8]

Pengyu Chen, Xuping Zhang. Upper semi-continuity of attractors for non-autonomous fractional stochastic parabolic equations with delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (8) : 4325-4357. doi: 10.3934/dcdsb.2020290

[9]

Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of random attractors for non-autonomous stochastic strongly damped wave equation with multiplicative noise. Discrete & Continuous Dynamical Systems, 2017, 37 (5) : 2787-2812. doi: 10.3934/dcds.2017120

[10]

Chi Phan. Random attractor for stochastic Hindmarsh-Rose equations with multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 3233-3256. doi: 10.3934/dcdsb.2020060

[11]

Anhui Gu, Kening Lu, Bixiang Wang. Asymptotic behavior of random Navier-Stokes equations driven by Wong-Zakai approximations. Discrete & Continuous Dynamical Systems, 2019, 39 (1) : 185-218. doi: 10.3934/dcds.2019008

[12]

Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521

[13]

Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207

[14]

Boris P. Belinskiy, Peter Caithamer. Stochastic stability of some mechanical systems with a multiplicative white noise. Conference Publications, 2003, 2003 (Special) : 91-99. doi: 10.3934/proc.2003.2003.91

[15]

Abiti Adili, Bixiang Wang. Random attractors for non-autonomous stochastic FitzHugh-Nagumo systems with multiplicative noise. Conference Publications, 2013, 2013 (special) : 1-10. doi: 10.3934/proc.2013.2013.1

[16]

Xuping Zhang. Pullback random attractors for fractional stochastic $ p $-Laplacian equation with delay and multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021107

[17]

Dandan Ma, Ji Shu, Ling Qin. Wong-Zakai approximations and asymptotic behavior of stochastic Ginzburg-Landau equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4335-4359. doi: 10.3934/dcdsb.2020100

[18]

Felix X.-F. Ye, Hong Qian. Stochastic dynamics Ⅱ: Finite random dynamical systems, linear representation, and entropy production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4341-4366. doi: 10.3934/dcdsb.2019122

[19]

Bixiang Wang. Random attractors for non-autonomous stochastic wave equations with multiplicative noise. Discrete & Continuous Dynamical Systems, 2014, 34 (1) : 269-300. doi: 10.3934/dcds.2014.34.269

[20]

Tomás Caraballo, José A. Langa, James C. Robinson. Stability and random attractors for a reaction-diffusion equation with multiplicative noise. Discrete & Continuous Dynamical Systems, 2000, 6 (4) : 875-892. doi: 10.3934/dcds.2000.6.875

2020 Impact Factor: 1.833

Metrics

  • PDF downloads (67)
  • HTML views (117)
  • Cited by (0)

Other articles
by authors

[Back to Top]