doi: 10.3934/era.2021064
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Initial boundary value problem of a class of mixed pseudo-parabolic Kirchhoff equations

School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China

* Corresponding author: Yang Cao

Received  January 2021 Revised  July 2021 Early access September 2021

Fund Project: The first author is supported by NSFC grant 11871134, 12171166

In this paper, we consider the initial boundary value problem for a mixed pseudo-parabolic Kirchhoff equation. Due to the comparison principle being invalid, we use the potential well method to give a threshold result of global existence and non-existence for the sign-changing weak solutions with initial energy $ J(u_0)\leq d $. When the initial energy $ J(u_0)>d $, we find another criterion for the vanishing solution and blow-up solution. Our interest also lies in the discussion of the exponential decay rate of the global solution and life span of the blow-up solution.

Citation: Yang Cao, Qiuting Zhao. Initial boundary value problem of a class of mixed pseudo-parabolic Kirchhoff equations. Electronic Research Archive, doi: 10.3934/era.2021064
References:
[1]

G. AutuoriP. Pucci and M. Salvatori, Global nonexistence for nonlinear Kirchhoff systems, Arch. Ration. Mech. Anal., 196 (2010), 489-516.  doi: 10.1007/s00205-009-0241-x.  Google Scholar

[2]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.  Google Scholar

[3]

C. BuddB. Dold and A. Stuart, Blow-up in a partial differential equation with conserved first integral, SIAM J. Appl. Math., 53 (1993), 718-742.  doi: 10.1137/0153036.  Google Scholar

[4]

Y. Cao and Q. Zhao, Asymptotic behavior of global solutions to a class of mixed pseudo-parabolic Kirchhoff equations, Appl. Math. Lett., 118 (2021), 107119, 6 pp. doi: 10.1016/j.aml.2021.107119.  Google Scholar

[5]

T. CaraballoM. Herrera-Cobos and P. Marín-Rubio, Robustness of nonautonomous attractors for a family of nonlocal reaction-diffusion equations without uniqueness, Nonlinear Dynam., 84 (2016), 35-50.  doi: 10.1007/s11071-015-2200-4.  Google Scholar

[6]

A. S. CarassoJ. G. Sanderson and J. M. Hyman, Digital removal of random media image degradations by solving the diffusion equation backwards in time, SIAM J. Numer. Anal., 15 (1978), 344-367.  doi: 10.1137/0715023.  Google Scholar

[7]

H. Chen and H. Xu, Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity, Discrete Contin. Dyn. Syst., 39 (2019), 1185-1203.  doi: 10.3934/dcds.2019051.  Google Scholar

[8]

S. ChenB. Zhang and X. Tang, Existence and non-existence results for Kirchhoff-type problems with convolution nonlinearity, Adv. Nonlinear Anal., 9 (2020), 148-176.  doi: 10.1515/anona-2018-0147.  Google Scholar

[9]

Y. ChenS. Levine and M. Rao, Variable exponent linear growth functionals in image restoration, SIMA. J. Appl. Math., 66 (2006), 1383-1406.  doi: 10.1137/050624522.  Google Scholar

[10]

H. Ding and J. Zhou, Global existence and blow-up for a mixed pseudo-parabolic $p$-Laplacian type equation with logarithmic nonlinearity, J. Math. Anal. Appl., 478 (2019), 393-420.  doi: 10.1016/j.jmaa.2019.05.018.  Google Scholar

[11]

Y. Fu and M. Xiang, Existence of solutions for parabolic equations of Kirchhoff type involving variable exponent, Appl. Anal., 95 (2016), 524-544.  doi: 10.1080/00036811.2015.1022153.  Google Scholar

[12]

Y. HanW. GaoZ. Sun and H. Li, Upper and lower bounds of blow-up time to a parabolic type Kirchhoff equation with arbitrary initial energy, Comput. Math. with Appl., 76 (2018), 2477-2483.  doi: 10.1016/j.camwa.2018.08.043.  Google Scholar

[13]

Y. Han and Q. Li, Threshold results for the existence of global and blow-up solutions to Kirchhoff equations with arbitrary initial energy, Comput. Math. Appl., 75 (2018), 3283-3297.  doi: 10.1016/j.camwa.2018.01.047.  Google Scholar

[14]

W. HeD. Qin and Q. Wu, Existence, multiplicity and nonexistence results for Kirchhoff type equations, Adv. Nonlinear Anal., 10 (2021), 616-635.  doi: 10.1515/anona-2020-0154.  Google Scholar

[15]

M. Jazar and R. Kiwan, Blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 215-218.  doi: 10.1016/j.anihpc.2006.12.002.  Google Scholar

[16]

G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883. Google Scholar

[17]

J. Li and Y. Han, Global existence and finite time blow-up of solutions to a nonlocal $p$-Laplace equation, Math. Model. Anal., 24 (2019), 195-217.  doi: 10.3846/mma.2019.014.  Google Scholar

[18]

W. LianJ. Wang and R. Xu, Global existence and blow up of solutions for pseudo-parabolic equation with singular potential, J. Differential Equations, 269 (2020), 4914-4959.  doi: 10.1016/j.jde.2020.03.047.  Google Scholar

[19]

Y. Liu, On potential wells and vacuum isolating of solutions for semilinear wave equations, J. Differential Equations, 192 (2003), 155-169.  doi: 10.1016/S0022-0396(02)00020-7.  Google Scholar

[20]

Y. Liu and J. Zhao, On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal., 64 (2006), 2665-2687.  doi: 10.1016/j.na.2005.09.011.  Google Scholar

[21]

V. Padrón, Sobolev regularization of a nonlinear ill-posed parabolic problem as a model for aggregating populations, Commun. in Partial Differential Equations, 23 (1998), 457-486.  doi: 10.1080/03605309808821353.  Google Scholar

[22]

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273-303.  doi: 10.1007/BF02761595.  Google Scholar

[23]

C. Qu and W. Zhou, Asymptotic analysis for a pseudo-parabolic equation with nonstandard growth conditions, Appl. Anal., (2021). doi: 10.1080/00036811.2020.1869941.  Google Scholar

[24]

C. Qu and W. Zhou, Blow-up and extinction for a thin-film equation with initial-boundary value conditions, J. Math. Anal. Appl., 436 (2016), 796-809.  doi: 10.1016/j.jmaa.2015.11.075.  Google Scholar

[25]

K. R. Rajagopal and M. $R\overset{\circ}{u}\breve{z}i\breve{c}ka$, Mathematical modeling of electrorheological materials, Continu. Mech. Thermodyn., 13 (2001), 59-78.  doi: 10.1007/s001610100034.  Google Scholar

[26]

D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Ration. Mech. Anal., 30 (1968), 148-172.  doi: 10.1007/BF00250942.  Google Scholar

[27]

R. E. Showalter, Nonlinear degenerate evolution equations and partial differential equations of mixed type, SIAM J. Math. Anal., 6 (1975), 25-42.  doi: 10.1137/0506004.  Google Scholar

[28]

N. H. Tuan, On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 5465-5494.  doi: 10.3934/dcdsb.2020354.  Google Scholar

[29]

X. WangY. ChenY. YangJ. Li and R. Xu, Kirchhoff-type system with linear weak damping and logarithmic nonlinearities, Nonlinear Anal., 188 (2019), 475-499.  doi: 10.1016/j.na.2019.06.019.  Google Scholar

[30]

X. Wang and R. Xu, Global existence and finite time blowup for a nonlocal semilinear pseudo-parabolic equation, Adv. Nonlinear Anal., 10 (2021), 261-288.  doi: 10.1515/anona-2020-0141.  Google Scholar

[31]

M. XiangV. D. Rǎdulescu and B. Zhang, Nonlocal Kirchhoff diffusion problems: local existence and blow-up of solutions, Nonlinearity, 31 (2018), 3228-3250.  doi: 10.1088/1361-6544/aaba35.  Google Scholar

[32]

R. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732-2763.  doi: 10.1016/j.jfa.2013.03.010.  Google Scholar

[33]

C. YangY. Cao and S. Zheng, Second critical exponent and life span for pseudo-parabolic equation, J. Differential Equations, 253 (2012), 3286-3303.  doi: 10.1016/j.jde.2012.09.001.  Google Scholar

[34]

V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat., 50 (1986), 675–710,877.  Google Scholar

[35]

V. V. Zhikov, On Lavrentiev's phenomenon, Russ. J. Math. Phys., 3 (1995), 249-269.   Google Scholar

[36]

V. V. Zhikov, Solvability of the three-dimensional thermistor problem, Proc. Stekolov Inst. Math., 261 (2008), 98-111.  doi: 10.1134/S0081543808020090.  Google Scholar

[37]

J. Zhou, Global asymptotical behavior of solutions to a class of fourth order parabolic equation modeling epitaxial growth, Nonlinear Anal. Real World Appl., 48 (2019), 54-70.  doi: 10.1016/j.nonrwa.2019.01.001.  Google Scholar

show all references

References:
[1]

G. AutuoriP. Pucci and M. Salvatori, Global nonexistence for nonlinear Kirchhoff systems, Arch. Ration. Mech. Anal., 196 (2010), 489-516.  doi: 10.1007/s00205-009-0241-x.  Google Scholar

[2]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.  Google Scholar

[3]

C. BuddB. Dold and A. Stuart, Blow-up in a partial differential equation with conserved first integral, SIAM J. Appl. Math., 53 (1993), 718-742.  doi: 10.1137/0153036.  Google Scholar

[4]

Y. Cao and Q. Zhao, Asymptotic behavior of global solutions to a class of mixed pseudo-parabolic Kirchhoff equations, Appl. Math. Lett., 118 (2021), 107119, 6 pp. doi: 10.1016/j.aml.2021.107119.  Google Scholar

[5]

T. CaraballoM. Herrera-Cobos and P. Marín-Rubio, Robustness of nonautonomous attractors for a family of nonlocal reaction-diffusion equations without uniqueness, Nonlinear Dynam., 84 (2016), 35-50.  doi: 10.1007/s11071-015-2200-4.  Google Scholar

[6]

A. S. CarassoJ. G. Sanderson and J. M. Hyman, Digital removal of random media image degradations by solving the diffusion equation backwards in time, SIAM J. Numer. Anal., 15 (1978), 344-367.  doi: 10.1137/0715023.  Google Scholar

[7]

H. Chen and H. Xu, Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity, Discrete Contin. Dyn. Syst., 39 (2019), 1185-1203.  doi: 10.3934/dcds.2019051.  Google Scholar

[8]

S. ChenB. Zhang and X. Tang, Existence and non-existence results for Kirchhoff-type problems with convolution nonlinearity, Adv. Nonlinear Anal., 9 (2020), 148-176.  doi: 10.1515/anona-2018-0147.  Google Scholar

[9]

Y. ChenS. Levine and M. Rao, Variable exponent linear growth functionals in image restoration, SIMA. J. Appl. Math., 66 (2006), 1383-1406.  doi: 10.1137/050624522.  Google Scholar

[10]

H. Ding and J. Zhou, Global existence and blow-up for a mixed pseudo-parabolic $p$-Laplacian type equation with logarithmic nonlinearity, J. Math. Anal. Appl., 478 (2019), 393-420.  doi: 10.1016/j.jmaa.2019.05.018.  Google Scholar

[11]

Y. Fu and M. Xiang, Existence of solutions for parabolic equations of Kirchhoff type involving variable exponent, Appl. Anal., 95 (2016), 524-544.  doi: 10.1080/00036811.2015.1022153.  Google Scholar

[12]

Y. HanW. GaoZ. Sun and H. Li, Upper and lower bounds of blow-up time to a parabolic type Kirchhoff equation with arbitrary initial energy, Comput. Math. with Appl., 76 (2018), 2477-2483.  doi: 10.1016/j.camwa.2018.08.043.  Google Scholar

[13]

Y. Han and Q. Li, Threshold results for the existence of global and blow-up solutions to Kirchhoff equations with arbitrary initial energy, Comput. Math. Appl., 75 (2018), 3283-3297.  doi: 10.1016/j.camwa.2018.01.047.  Google Scholar

[14]

W. HeD. Qin and Q. Wu, Existence, multiplicity and nonexistence results for Kirchhoff type equations, Adv. Nonlinear Anal., 10 (2021), 616-635.  doi: 10.1515/anona-2020-0154.  Google Scholar

[15]

M. Jazar and R. Kiwan, Blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 215-218.  doi: 10.1016/j.anihpc.2006.12.002.  Google Scholar

[16]

G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883. Google Scholar

[17]

J. Li and Y. Han, Global existence and finite time blow-up of solutions to a nonlocal $p$-Laplace equation, Math. Model. Anal., 24 (2019), 195-217.  doi: 10.3846/mma.2019.014.  Google Scholar

[18]

W. LianJ. Wang and R. Xu, Global existence and blow up of solutions for pseudo-parabolic equation with singular potential, J. Differential Equations, 269 (2020), 4914-4959.  doi: 10.1016/j.jde.2020.03.047.  Google Scholar

[19]

Y. Liu, On potential wells and vacuum isolating of solutions for semilinear wave equations, J. Differential Equations, 192 (2003), 155-169.  doi: 10.1016/S0022-0396(02)00020-7.  Google Scholar

[20]

Y. Liu and J. Zhao, On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal., 64 (2006), 2665-2687.  doi: 10.1016/j.na.2005.09.011.  Google Scholar

[21]

V. Padrón, Sobolev regularization of a nonlinear ill-posed parabolic problem as a model for aggregating populations, Commun. in Partial Differential Equations, 23 (1998), 457-486.  doi: 10.1080/03605309808821353.  Google Scholar

[22]

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273-303.  doi: 10.1007/BF02761595.  Google Scholar

[23]

C. Qu and W. Zhou, Asymptotic analysis for a pseudo-parabolic equation with nonstandard growth conditions, Appl. Anal., (2021). doi: 10.1080/00036811.2020.1869941.  Google Scholar

[24]

C. Qu and W. Zhou, Blow-up and extinction for a thin-film equation with initial-boundary value conditions, J. Math. Anal. Appl., 436 (2016), 796-809.  doi: 10.1016/j.jmaa.2015.11.075.  Google Scholar

[25]

K. R. Rajagopal and M. $R\overset{\circ}{u}\breve{z}i\breve{c}ka$, Mathematical modeling of electrorheological materials, Continu. Mech. Thermodyn., 13 (2001), 59-78.  doi: 10.1007/s001610100034.  Google Scholar

[26]

D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Ration. Mech. Anal., 30 (1968), 148-172.  doi: 10.1007/BF00250942.  Google Scholar

[27]

R. E. Showalter, Nonlinear degenerate evolution equations and partial differential equations of mixed type, SIAM J. Math. Anal., 6 (1975), 25-42.  doi: 10.1137/0506004.  Google Scholar

[28]

N. H. Tuan, On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 5465-5494.  doi: 10.3934/dcdsb.2020354.  Google Scholar

[29]

X. WangY. ChenY. YangJ. Li and R. Xu, Kirchhoff-type system with linear weak damping and logarithmic nonlinearities, Nonlinear Anal., 188 (2019), 475-499.  doi: 10.1016/j.na.2019.06.019.  Google Scholar

[30]

X. Wang and R. Xu, Global existence and finite time blowup for a nonlocal semilinear pseudo-parabolic equation, Adv. Nonlinear Anal., 10 (2021), 261-288.  doi: 10.1515/anona-2020-0141.  Google Scholar

[31]

M. XiangV. D. Rǎdulescu and B. Zhang, Nonlocal Kirchhoff diffusion problems: local existence and blow-up of solutions, Nonlinearity, 31 (2018), 3228-3250.  doi: 10.1088/1361-6544/aaba35.  Google Scholar

[32]

R. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732-2763.  doi: 10.1016/j.jfa.2013.03.010.  Google Scholar

[33]

C. YangY. Cao and S. Zheng, Second critical exponent and life span for pseudo-parabolic equation, J. Differential Equations, 253 (2012), 3286-3303.  doi: 10.1016/j.jde.2012.09.001.  Google Scholar

[34]

V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat., 50 (1986), 675–710,877.  Google Scholar

[35]

V. V. Zhikov, On Lavrentiev's phenomenon, Russ. J. Math. Phys., 3 (1995), 249-269.   Google Scholar

[36]

V. V. Zhikov, Solvability of the three-dimensional thermistor problem, Proc. Stekolov Inst. Math., 261 (2008), 98-111.  doi: 10.1134/S0081543808020090.  Google Scholar

[37]

J. Zhou, Global asymptotical behavior of solutions to a class of fourth order parabolic equation modeling epitaxial growth, Nonlinear Anal. Real World Appl., 48 (2019), 54-70.  doi: 10.1016/j.nonrwa.2019.01.001.  Google Scholar

[1]

Hua Chen, Huiyang Xu. Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete & Continuous Dynamical Systems, 2019, 39 (2) : 1185-1203. doi: 10.3934/dcds.2019051

[2]

Xiaoli Zhu, Fuyi Li, Ting Rong. Global existence and blow up of solutions to a class of pseudo-parabolic equations with an exponential source. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2465-2485. doi: 10.3934/cpaa.2015.14.2465

[3]

Monica Marras, Stella Vernier-Piro, Giuseppe Viglialoro. Blow-up phenomena for nonlinear pseudo-parabolic equations with gradient term. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2291-2300. doi: 10.3934/dcdsb.2017096

[4]

Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058

[5]

Long Wei, Zhijun Qiao, Yang Wang, Shouming Zhou. Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1733-1748. doi: 10.3934/dcds.2017072

[6]

Helin Guo, Yimin Zhang, Huansong Zhou. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1875-1897. doi: 10.3934/cpaa.2018089

[7]

Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li. Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28 (1) : 369-381. doi: 10.3934/era.2020021

[8]

Monica Marras, Stella Vernier Piro. On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients. Conference Publications, 2013, 2013 (special) : 535-544. doi: 10.3934/proc.2013.2013.535

[9]

Yang Cao, Jingxue Yin. Small perturbation of a semilinear pseudo-parabolic equation. Discrete & Continuous Dynamical Systems, 2016, 36 (2) : 631-642. doi: 10.3934/dcds.2016.36.631

[10]

Xiaoliang Li, Baiyu Liu. Finite time blow-up and global solutions for a nonlocal parabolic equation with Hartree type nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (6) : 3093-3112. doi: 10.3934/cpaa.2020134

[11]

Shuyin Wu, Joachim Escher, Zhaoyang Yin. Global existence and blow-up phenomena for a weakly dissipative Degasperis-Procesi equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 633-645. doi: 10.3934/dcdsb.2009.12.633

[12]

Xiumei Deng, Jun Zhou. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (2) : 923-939. doi: 10.3934/cpaa.2020042

[13]

Jianbo Cui, Jialin Hong, Liying Sun. On global existence and blow-up for damped stochastic nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6837-6854. doi: 10.3934/dcdsb.2019169

[14]

Huafei Di, Yadong Shang, Xiaoxiao Zheng. Global well-posedness for a fourth order pseudo-parabolic equation with memory and source terms. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 781-801. doi: 10.3934/dcdsb.2016.21.781

[15]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[16]

Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843

[17]

Guangyu Xu, Jun Zhou. Global existence and blow-up of solutions to a singular Non-Newton polytropic filtration equation with critical and supercritical initial energy. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1805-1820. doi: 10.3934/cpaa.2018086

[18]

Jun Zhou. Initial boundary value problem for a inhomogeneous pseudo-parabolic equation. Electronic Research Archive, 2020, 28 (1) : 67-90. doi: 10.3934/era.2020005

[19]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[20]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

2020 Impact Factor: 1.833

Metrics

  • PDF downloads (58)
  • HTML views (81)
  • Cited by (0)

Other articles
by authors

[Back to Top]