• Previous Article
    Multidimensional stability of pyramidal traveling fronts in degenerate Fisher-KPP monostable and combustion equations
  • ERA Home
  • This Issue
  • Next Article
    A stabilizer free WG method for the Stokes equations with order two superconvergence on polytopal mesh
doi: 10.3934/era.2021065
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

A computable formula for the class number of the imaginary quadratic field $ \mathbb Q(\sqrt{-p}), \ p = 4n-1 $

One University Drive, Camarillo, CA 93012, USA

Received  May 2021 Revised  July 2021 Early access September 2021

Using elementary methods, we count the quadratic residues of a prime number of the form $ p = 4n-1 $ in a manner that has not been explored before. The simplicity of the pattern found leads to a novel formula for the class number $ h $ of the imaginary quadratic field $ \mathbb Q(\sqrt{-p}). $ Such formula is computable and does not rely on the Dirichlet character or the Kronecker symbol at all. Examples are provided and formulas for the sum of the quadratic residues are also found.

Citation: Jorge Garcia Villeda. A computable formula for the class number of the imaginary quadratic field $ \mathbb Q(\sqrt{-p}), \ p = 4n-1 $. Electronic Research Archive, doi: 10.3934/era.2021065
References:
[1]

H. Cohen, A Course in Computational Algebraic Number Theory, Volume 138 of Graduate Text in Mathematics, Springer-Verlag, New York, 1993. doi: 10.1007/978-3-662-02945-9.  Google Scholar

[2]

L. E. Dickson, Introduction to the Theory of Numbers, Dover Publ. Inc., New York, 1957. Google Scholar

[3]

P. G. L. Dirichlet, Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält, Volume 1, Cambridge University Press, (2012), 313–342. doi: 10.1017/CBO9781139237338.023.  Google Scholar

[4]

J. Garcia, Sum of quadratic-type residues modulus a prime $p = 4n-1$, work in progress. Google Scholar

[5]

W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, Springer, 2004. doi: 10.1007/978-3-662-07001-7.  Google Scholar

[6]

D. Shanks, Class number, a theory of factorization, and genera, 1969 Number Theory Institute (Proc. Sympos. Pure Math., Volume XX, State Univ. New York, Stony Brook, N.Y., 1969), Amer. Math. Soc., (1971), 415–440.  Google Scholar

show all references

References:
[1]

H. Cohen, A Course in Computational Algebraic Number Theory, Volume 138 of Graduate Text in Mathematics, Springer-Verlag, New York, 1993. doi: 10.1007/978-3-662-02945-9.  Google Scholar

[2]

L. E. Dickson, Introduction to the Theory of Numbers, Dover Publ. Inc., New York, 1957. Google Scholar

[3]

P. G. L. Dirichlet, Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält, Volume 1, Cambridge University Press, (2012), 313–342. doi: 10.1017/CBO9781139237338.023.  Google Scholar

[4]

J. Garcia, Sum of quadratic-type residues modulus a prime $p = 4n-1$, work in progress. Google Scholar

[5]

W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, Springer, 2004. doi: 10.1007/978-3-662-07001-7.  Google Scholar

[6]

D. Shanks, Class number, a theory of factorization, and genera, 1969 Number Theory Institute (Proc. Sympos. Pure Math., Volume XX, State Univ. New York, Stony Brook, N.Y., 1969), Amer. Math. Soc., (1971), 415–440.  Google Scholar

Figure 1.  The resulting case when $ n-1\in (R_{M-1},Q_{M-1}] $
Figure 2.  The resulting case when $ n-1\in [R_M,Q_M) $
Table 1.  The quadratic residues $ r = {r_p}\left( {{n^2}} \right) $ for each of the four different cases of $ n $
$ n $ $ M $ $ p $ $ r $
$ 4k $ $ k $ $ 16k-1 $ $ M $
$ 4k+1 $ $ k $ $ 16k+3 $ $ 5M+1 $
$ 4k+2 $ $ k $ $ 16k+7 $ $ 9M+4 $
$ 4k+3 $ $ k $ $ 16k+11 $ $ 13M+9 $
$ n $ $ M $ $ p $ $ r $
$ 4k $ $ k $ $ 16k-1 $ $ M $
$ 4k+1 $ $ k $ $ 16k+3 $ $ 5M+1 $
$ 4k+2 $ $ k $ $ 16k+7 $ $ 9M+4 $
$ 4k+3 $ $ k $ $ 16k+11 $ $ 13M+9 $
[1]

Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141

[2]

Fedor Petrov, Zhi-Wei Sun. Proof of some conjectures involving quadratic residues. Electronic Research Archive, 2020, 28 (2) : 589-597. doi: 10.3934/era.2020031

[3]

Laurent Imbert, Michael J. Jacobson, Jr., Arthur Schmidt. Fast ideal cubing in imaginary quadratic number and function fields. Advances in Mathematics of Communications, 2010, 4 (2) : 237-260. doi: 10.3934/amc.2010.4.237

[4]

Arne Winterhof, Zibi Xiao. Binary sequences derived from differences of consecutive quadratic residues. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020100

[5]

J. C. Artés, Jaume Llibre, J. C. Medrado. Nonexistence of limit cycles for a class of structurally stable quadratic vector fields. Discrete & Continuous Dynamical Systems, 2007, 17 (2) : 259-270. doi: 10.3934/dcds.2007.17.259

[6]

René Carmona, Kenza Hamidouche, Mathieu Laurière, Zongjun Tan. Linear-quadratic zero-sum mean-field type games: Optimality conditions and policy optimization. Journal of Dynamics & Games, 2021, 8 (4) : 403-443. doi: 10.3934/jdg.2021023

[7]

José Luis Bravo, Manuel Fernández, Ignacio Ojeda, Fernando Sánchez. Uniqueness of limit cycles for quadratic vector fields. Discrete & Continuous Dynamical Systems, 2019, 39 (1) : 483-502. doi: 10.3934/dcds.2019020

[8]

B. Coll, Chengzhi Li, Rafel Prohens. Quadratic perturbations of a class of quadratic reversible systems with two centers. Discrete & Continuous Dynamical Systems, 2009, 24 (3) : 699-729. doi: 10.3934/dcds.2009.24.699

[9]

Haihua Liang, Yulin Zhao. Quadratic perturbations of a class of quadratic reversible systems with one center. Discrete & Continuous Dynamical Systems, 2010, 27 (1) : 325-335. doi: 10.3934/dcds.2010.27.325

[10]

Carlos A. Berenstein and Alain Yger. Residues and effective Nullstellensatz. Electronic Research Announcements, 1996, 2: 82-91.

[11]

Yi Shao, Yulin Zhao. The cyclicity of the period annulus of a class of quadratic reversible system. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1269-1283. doi: 10.3934/cpaa.2012.11.1269

[12]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Homoclinic orbits for a class of asymptotically quadratic Hamiltonian systems. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2855-2878. doi: 10.3934/cpaa.2019128

[13]

Constantin N. Beli. Representations of integral quadratic forms over dyadic local fields. Electronic Research Announcements, 2006, 12: 100-112.

[14]

Martino Bardi. Explicit solutions of some linear-quadratic mean field games. Networks & Heterogeneous Media, 2012, 7 (2) : 243-261. doi: 10.3934/nhm.2012.7.243

[15]

Kai Du, Jianhui Huang, Zhen Wu. Linear quadratic mean-field-game of backward stochastic differential systems. Mathematical Control & Related Fields, 2018, 8 (3&4) : 653-678. doi: 10.3934/mcrf.2018028

[16]

Olivier Guéant. New numerical methods for mean field games with quadratic costs. Networks & Heterogeneous Media, 2012, 7 (2) : 315-336. doi: 10.3934/nhm.2012.7.315

[17]

Zhenghong Qiu, Jianhui Huang, Tinghan Xie. Linear-Quadratic-Gaussian mean-field controls of social optima. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021047

[18]

Arezu Zare, Mohammad Keyanpour, Maziar Salahi. On fractional quadratic optimization problem with two quadratic constraints. Numerical Algebra, Control & Optimization, 2020, 10 (3) : 301-315. doi: 10.3934/naco.2020003

[19]

Dan Coman. On the dynamics of a class of quadratic polynomial automorphisms of $\mathbb C^3$. Discrete & Continuous Dynamical Systems, 2002, 8 (1) : 55-67. doi: 10.3934/dcds.2002.8.55

[20]

Jun Wang, Junxiang Xu, Fubao Zhang. Homoclinic orbits for a class of Hamiltonian systems with superquadratic or asymptotically quadratic potentials. Communications on Pure & Applied Analysis, 2011, 10 (1) : 269-286. doi: 10.3934/cpaa.2011.10.269

2020 Impact Factor: 1.833

Metrics

  • PDF downloads (41)
  • HTML views (82)
  • Cited by (0)

Other articles
by authors

[Back to Top]