# American Institute of Mathematical Sciences

December  2021, 29(6): 4159-4175. doi: 10.3934/era.2021077

## Global dynamics of some system of second-order difference equations

 Department of Mathematics, Hung Yen University of Technology and Education, Hung Yen 160000, Vietnam

* Corresponding author

Received  June 2021 Published  December 2021 Early access  October 2021

Fund Project: The first author is supported by UTEHY grand number UTEHY.L.2020.11

In this paper, we study the boundedness and persistence of positive solution, existence of invariant rectangle, local and global behavior, and rate of convergence of positive solutions of the following systems of exponential difference equations
 \begin{align*} x_{n+1} = \dfrac{\alpha_1+\beta_1e^{-x_{n-1}}}{\gamma_1+y_n},\ y_{n+1} = \dfrac{\alpha_2+\beta_2e^{-y_{n-1}}}{\gamma_2+x_n},\\ x_{n+1} = \dfrac{\alpha_1+\beta_1e^{-y_{n-1}}}{\gamma_1+x_n},\ y_{n+1} = \dfrac{\alpha_2+\beta_2e^{-x_{n-1}}}{\gamma_2+y_n}, \end{align*}
where the parameters
 $\alpha_i,\ \beta_i,\ \gamma_i$
for
 $i \in \{1,2\}$
and the initial conditions
 $x_{-1}, x_0, y_{-1}, y_0$
are positive real numbers. Some numerical example are given to illustrate our theoretical results.
Citation: Tran Hong Thai, Nguyen Anh Dai, Pham Tuan Anh. Global dynamics of some system of second-order difference equations. Electronic Research Archive, 2021, 29 (6) : 4159-4175. doi: 10.3934/era.2021077
##### References:
 [1] R. P. Agarwal, Difference Equations and Inequalities, 2$^{nd}$ edition, Dekker, New York, 2000.  Google Scholar [2] Q. Din, Global stability of a population models, Chaos, Solitons & Fractals, 59 (2014), 119-128.  doi: 10.1016/j.chaos.2013.12.008.  Google Scholar [3] Q. Din and E. M. Elsayed, Stability analysis of a discrete ecological model, Computational Ecology and Software, 4 (2014), 89-103.   Google Scholar [4] H. El-Metwally, E. A. Grove, G. Ladas, R. Levins and M. Radin, On the difference equation $x_{n+1} = \alpha + \beta x_{n-1}e^{-x_n}$, Nonlinear Anal., 47 (2001), 4623-4634.  doi: 10.1016/S0362-546X(01)00575-2.  Google Scholar [5] N. Fotiades and G. Papaschinopoulos, Existence, uniqueness and attractivity of prime period two solution for a difference equation of exponential form, Appl. Math. Comput., 218 (2012), 11648-11653.  doi: 10.1016/j.amc.2012.05.047.  Google Scholar [6] E. A. Grove and G. Ladas, Periodicities in Nonlinear Difference Equations, Chapman and Hall/CRC, Boca Raton, Fla, 2005.  Google Scholar [7] E. A. Grove, G. Ladas, N. R. Prokup and R. Levins, On the global behavior of solutions of a biological model, Comm. Appl. Nonlinear Anal., 7 (2000), 33-46.   Google Scholar [8] T. Hong Thai, Asymptotic behavior of the solution of a system of difference equations, Int. J. Difference Equ., 13 (2018), 157-171.   Google Scholar [9] T. Hong Thai and V. Van Khuong, Stability analysis of a system of second-order difference equations, Math. Methods Appl. Sci., 39 (2016), 3691-3700.  doi: 10.1002/mma.3816.  Google Scholar [10] V. L. Kocić and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993. doi: 10.1007/978-94-017-1703-8.  Google Scholar [11] M. R. S. Kulenović and G. Ladas, Dynamics of Second Order Rational Difference Equations, Chapman and Hall/CRC, Boca Raton, Fla, 2002.  Google Scholar [12] I. Ozturk, F. Bozkurt and S. Ozen, On the difference equation $y_{n+1} = \dfrac{\alpha+\beta e^{-y_n}}{\gamma + y_{n-1}}$, Appl. Math. Comput., 181 (2006), 1387-1393.  doi: 10.1016/j.amc.2006.03.007.  Google Scholar [13] G. Papaschinopoluos, G. Ellina and K. B. Papadopoulos, Asymptotic behavior of the positive solutions of an exponential type system of difference equations, Appl. Math. Comput., 245 (2014), 181-190.  doi: 10.1016/j.amc.2014.07.074.  Google Scholar [14] G. Papaschinopoluos, N. Fotiades and C. J. Schinas, On a system of difference equations including negative exponential terms, J. Difference Equ. Appl., 20 (2014), 717-732.  doi: 10.1080/10236198.2013.814647.  Google Scholar [15] G. Papaschinopoluos, M. A. Radin and C. J. Schinas, On the system of two difference equations of exponential form: $x_{n+1} = a+b x_{n-1}e^{-y_n}, y_{n+1} = c+d y_{n-1}e^{-x_n}$, Math. Comput. Modelling, 54 (2011), 2969-2977.  doi: 10.1016/j.mcm.2011.07.019.  Google Scholar [16] G. Papaschinopoluos, M. Radin and C. J. Schinas, Study of the asymptotic behavior of the solutions of three systems of difference equations of exponential form, Appl. Math. Comput., 218 (2012), 5310-5318.  doi: 10.1016/j.amc.2011.11.014.  Google Scholar [17] G. Papaschinopoluos and C. J. Schinas, On the dynamics of two exponential type systems of difference equations, Comput. Math. Appl., 64 (2012), 2326-2334.  doi: 10.1016/j.camwa.2012.04.002.  Google Scholar [18] M. Pituk, More on Poincaré's and Peron's theorems for difference equations, J. Difference Equ. Appl., 8 (2002), 201-216.  doi: 10.1080/10236190211954.  Google Scholar [19] H. Sedaghat, Nonlinear Difference Equations: Theory with Applications to Social Science Models, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2003. doi: 10.1007/978-94-017-0417-5.  Google Scholar [20] W. Wang and H. Feng, On the dynamics of positive solutions for the difference equation in a new population model, J. Nonlinear Sci. Appl., 9 (2016), 1748-1754.  doi: 10.22436/jnsa.009.04.30.  Google Scholar

show all references

##### References:
 [1] R. P. Agarwal, Difference Equations and Inequalities, 2$^{nd}$ edition, Dekker, New York, 2000.  Google Scholar [2] Q. Din, Global stability of a population models, Chaos, Solitons & Fractals, 59 (2014), 119-128.  doi: 10.1016/j.chaos.2013.12.008.  Google Scholar [3] Q. Din and E. M. Elsayed, Stability analysis of a discrete ecological model, Computational Ecology and Software, 4 (2014), 89-103.   Google Scholar [4] H. El-Metwally, E. A. Grove, G. Ladas, R. Levins and M. Radin, On the difference equation $x_{n+1} = \alpha + \beta x_{n-1}e^{-x_n}$, Nonlinear Anal., 47 (2001), 4623-4634.  doi: 10.1016/S0362-546X(01)00575-2.  Google Scholar [5] N. Fotiades and G. Papaschinopoulos, Existence, uniqueness and attractivity of prime period two solution for a difference equation of exponential form, Appl. Math. Comput., 218 (2012), 11648-11653.  doi: 10.1016/j.amc.2012.05.047.  Google Scholar [6] E. A. Grove and G. Ladas, Periodicities in Nonlinear Difference Equations, Chapman and Hall/CRC, Boca Raton, Fla, 2005.  Google Scholar [7] E. A. Grove, G. Ladas, N. R. Prokup and R. Levins, On the global behavior of solutions of a biological model, Comm. Appl. Nonlinear Anal., 7 (2000), 33-46.   Google Scholar [8] T. Hong Thai, Asymptotic behavior of the solution of a system of difference equations, Int. J. Difference Equ., 13 (2018), 157-171.   Google Scholar [9] T. Hong Thai and V. Van Khuong, Stability analysis of a system of second-order difference equations, Math. Methods Appl. Sci., 39 (2016), 3691-3700.  doi: 10.1002/mma.3816.  Google Scholar [10] V. L. Kocić and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993. doi: 10.1007/978-94-017-1703-8.  Google Scholar [11] M. R. S. Kulenović and G. Ladas, Dynamics of Second Order Rational Difference Equations, Chapman and Hall/CRC, Boca Raton, Fla, 2002.  Google Scholar [12] I. Ozturk, F. Bozkurt and S. Ozen, On the difference equation $y_{n+1} = \dfrac{\alpha+\beta e^{-y_n}}{\gamma + y_{n-1}}$, Appl. Math. Comput., 181 (2006), 1387-1393.  doi: 10.1016/j.amc.2006.03.007.  Google Scholar [13] G. Papaschinopoluos, G. Ellina and K. B. Papadopoulos, Asymptotic behavior of the positive solutions of an exponential type system of difference equations, Appl. Math. Comput., 245 (2014), 181-190.  doi: 10.1016/j.amc.2014.07.074.  Google Scholar [14] G. Papaschinopoluos, N. Fotiades and C. J. Schinas, On a system of difference equations including negative exponential terms, J. Difference Equ. Appl., 20 (2014), 717-732.  doi: 10.1080/10236198.2013.814647.  Google Scholar [15] G. Papaschinopoluos, M. A. Radin and C. J. Schinas, On the system of two difference equations of exponential form: $x_{n+1} = a+b x_{n-1}e^{-y_n}, y_{n+1} = c+d y_{n-1}e^{-x_n}$, Math. Comput. Modelling, 54 (2011), 2969-2977.  doi: 10.1016/j.mcm.2011.07.019.  Google Scholar [16] G. Papaschinopoluos, M. Radin and C. J. Schinas, Study of the asymptotic behavior of the solutions of three systems of difference equations of exponential form, Appl. Math. Comput., 218 (2012), 5310-5318.  doi: 10.1016/j.amc.2011.11.014.  Google Scholar [17] G. Papaschinopoluos and C. J. Schinas, On the dynamics of two exponential type systems of difference equations, Comput. Math. Appl., 64 (2012), 2326-2334.  doi: 10.1016/j.camwa.2012.04.002.  Google Scholar [18] M. Pituk, More on Poincaré's and Peron's theorems for difference equations, J. Difference Equ. Appl., 8 (2002), 201-216.  doi: 10.1080/10236190211954.  Google Scholar [19] H. Sedaghat, Nonlinear Difference Equations: Theory with Applications to Social Science Models, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2003. doi: 10.1007/978-94-017-0417-5.  Google Scholar [20] W. Wang and H. Feng, On the dynamics of positive solutions for the difference equation in a new population model, J. Nonlinear Sci. Appl., 9 (2016), 1748-1754.  doi: 10.22436/jnsa.009.04.30.  Google Scholar
Plot of $x_n$ for the system 32
Plot of $y_n$ for the system 32
An attractor of the system 32
Plot of $x_n$ for the system 33
Plot of $y_n$ for the system 33
Phase portrait of system 33
Plot of $x_n$ for the system 34
Plot of $y_n$ for the system 34
An attractor of the system 34
Plot of $x_n$ for the system 35
Plot of $y_n$ for the system 35
Phase portrait of system 35
 [1] Amira Khelifa, Yacine Halim. Global behavior of P-dimensional difference equations system. Electronic Research Archive, 2021, 29 (5) : 3121-3139. doi: 10.3934/era.2021029 [2] Alexandra Rodkina, Henri Schurz. On positivity and boundedness of solutions of nonlinear stochastic difference equations. Conference Publications, 2009, 2009 (Special) : 640-649. doi: 10.3934/proc.2009.2009.640 [3] Qi Wang, Yang Song, Lingjie Shao. Boundedness and persistence of populations in advective Lotka-Volterra competition system. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2245-2263. doi: 10.3934/dcdsb.2018195 [4] Michela Eleuteri, Pavel Krejčí. An asymptotic convergence result for a system of partial differential equations with hysteresis. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1131-1143. doi: 10.3934/cpaa.2007.6.1131 [5] Julián Fernández Bonder, Analía Silva, Juan F. Spedaletti. Gamma convergence and asymptotic behavior for eigenvalues of nonlocal problems. Discrete & Continuous Dynamical Systems, 2021, 41 (5) : 2125-2140. doi: 10.3934/dcds.2020355 [6] Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 2037-2053. doi: 10.3934/dcdsb.2020365 [7] Dina Kalinichenko, Volker Reitmann, Sergey Skopinov. Asymptotic behavior of solutions to a coupled system of Maxwell's equations and a controlled differential inclusion. Conference Publications, 2013, 2013 (special) : 407-414. doi: 10.3934/proc.2013.2013.407 [8] Yong Liu. Even solutions of the Toda system with prescribed asymptotic behavior. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1779-1790. doi: 10.3934/cpaa.2011.10.1779 [9] M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 [10] Ciprian G. Gal, M. Grasselli. On the asymptotic behavior of the Caginalp system with dynamic boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 689-710. doi: 10.3934/cpaa.2009.8.689 [11] Sergio Frigeri. Asymptotic behavior of a hyperbolic system arising in ferroelectricity. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1393-1414. doi: 10.3934/cpaa.2008.7.1393 [12] Yongqin Liu, Shuichi Kawashima. Asymptotic behavior of solutions to a model system of a radiating gas. Communications on Pure & Applied Analysis, 2011, 10 (1) : 209-223. doi: 10.3934/cpaa.2011.10.209 [13] Chao Liu, Bin Liu. Boundedness and asymptotic behavior in a predator-prey model with indirect pursuit-evasion interaction. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021255 [14] Wenxian Shen, Shuwen Xue. Persistence and convergence in parabolic-parabolic chemotaxis system with logistic source on $\mathbb{R}^{N}$. Discrete & Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022003 [15] Zhilei Liang. Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1907-1926. doi: 10.3934/cpaa.2013.12.1907 [16] Jong-Shenq Guo, Satoshi Sasayama, Chi-Jen Wang. Blowup rate estimate for a system of semilinear parabolic equations. Communications on Pure & Applied Analysis, 2009, 8 (2) : 711-718. doi: 10.3934/cpaa.2009.8.711 [17] Jingyu Li. Asymptotic behavior of solutions to elliptic equations in a coated body. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1251-1267. doi: 10.3934/cpaa.2009.8.1251 [18] Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017 [19] Lie Zheng. Asymptotic behavior of solutions to the nonlinear breakage equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 463-473. doi: 10.3934/cpaa.2005.4.463 [20] Yadong Shang, Jianjun Paul Tian, Bixiang Wang. Asymptotic behavior of the stochastic Keller-Segel equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1367-1391. doi: 10.3934/dcdsb.2019020

2020 Impact Factor: 1.833