doi: 10.3934/era.2021078
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

On the existence of solutions for the Frenkel-Kontorova models on quasi-crystals

1. 

School of Mathematical Sciences, Beijing Normal University, No. 19, XinJieKouWai St., HaiDian District, Beijing 100875, China

2. 

Laboratory of Mathematics and Complex Systems (Ministry of Education)

* Corresponding author: Xifeng Su

Received  December 2020 Revised  August 2021 Early access October 2021

Fund Project: The second author is supported by the National Natural Science Foundation of China (Grant No. 11971060, 11871242)

This article focuses on recent investigations on equilibria of the Frenkel-Kontorova models subjected to potentials generated by quasi-crystals.

We present a specific one-dimensional model with an explicit potential driven by the Fibonacci quasi-crystal. For a given positive number $ \theta $, we show that there are multiple equilibria with rotation number $ \theta $, e.g., a minimal configuration and a non-minimal equilibrium configuration. Some numerical experiments verifying the existence of such equilibria are provided.

Citation: Jianxing Du, Xifeng Su. On the existence of solutions for the Frenkel-Kontorova models on quasi-crystals. Electronic Research Archive, doi: 10.3934/era.2021078
References:
[1]

B. Adamczewski and Y. Bugeaud, Transcendence and Diophantine approximation, in Combinatorics, Automata and Number Theory, vol. 135 of Encyclopedia Math. Appl., Cambridge Univ. Press, Cambridge, (2010), 410–451.  Google Scholar

[2]

R. ArtusoG. Casati and D. L. Shepelyansky, Breakdown of universality in renormalization dynamics for critical invariant torus, Europhys. Lett., 15 (1991), 381-386.  doi: 10.1209/0295-5075/15/4/003.  Google Scholar

[3]

S. Aubry and G. Abramovici, Chaotic trajectories in the standard map. The concept of anti-integrability, Phys. D, 43 (1990), 199-219.  doi: 10.1016/0167-2789(90)90133-A.  Google Scholar

[4]

R. BalasubramanianS. H. Kulkarni and R. Radha, Solution of a tridiagonal operator equation, Linear Algebra Appl., 414 (2006), 389-405.  doi: 10.1016/j.laa.2005.10.014.  Google Scholar

[5]

T. Blass and R. de la Llave, The analyticity breakdown for Frenkel-Kontorova models in quasi-periodic media: Numerical explorations, J. Stat. Phys., 150 (2013), 1183-1200.  doi: 10.1007/s10955-013-0718-8.  Google Scholar

[6]

O. M. Braun and Y. S. Kivshar, The Frenkel-Kontorova Model, Texts and Monographs in Physics, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-662-10331-9.  Google Scholar

[7]

J.-M. GambaudoP. Guiraud and S. Petite, Minimal configurations for the Frenkel-Kontorova model on a quasicrystal, Comm. Math. Phys., 265 (2006), 165-188.  doi: 10.1007/s00220-006-1531-x.  Google Scholar

[8]

E. GaribaldiS. Petite and P. Thieullen, Calibrated configurations for Frenkel-Kontorova type models in almost periodic environments, Ann. Henri Poincaré, 18 (2017), 2905-2943.  doi: 10.1007/s00023-017-0589-7.  Google Scholar

[9]

Y. Huang and W. F. McColl, Analytical inversion of general tridiagonal matrices, J. Phys. A, 30 (1997), 7919-7933.  doi: 10.1088/0305-4470/30/22/026.  Google Scholar

[10]

P.-L. Lions and P. E. Souganidis, Correctors for the homogenization of Hamilton-Jacobi equations in the stationary ergodic setting, Comm. Pure Appl. Math., 56 (2003), 1501-1524.  doi: 10.1002/cpa.10101.  Google Scholar

[11]

L. Sadun, Topology of Tiling Spaces, vol. 46 of University Lecture Series, American Mathematical Society, Providence, RI, 2008. doi: 10.1090/ulect/046.  Google Scholar

[12]

A. A. Selvan and R. Radha, Invertibility of a tridiagonal operator with an application to a non-uniform sampling problem, Linear Multilinear Algebra, 65 (2017), 973-990.  doi: 10.1080/03081087.2016.1217978.  Google Scholar

[13]

X. Su and R. de la Llave, KAM theory for quasi-periodic equilibria in one-dimensional quasi-periodic media, SIAM J. Math. Anal., 44 (2012), 3901-3927.  doi: 10.1137/12087160X.  Google Scholar

[14]

X. Su and R. de la Llave, A continuous family of equilibria in ferromagnetic media are ground states, Comm. Math. Phys., 354 (2017), 459-475.  doi: 10.1007/s00220-017-2913-y.  Google Scholar

[15]

S. Tompaidis, Numerical study of invariant sets of a quasiperiodic perturbation of a symplectic map, Experiment. Math., 5 (1996), 211–230, http://projecteuclid.org/euclid.em/1047915102. doi: 10.1080/10586458.1996.10504589.  Google Scholar

[16]

R. Treviño, Equilibrium configurations for generalized Frenkel-Kontorova models on quasicrystals, Comm. Math. Phys., 371 (2019), 1-17.  doi: 10.1007/s00220-019-03557-7.  Google Scholar

show all references

References:
[1]

B. Adamczewski and Y. Bugeaud, Transcendence and Diophantine approximation, in Combinatorics, Automata and Number Theory, vol. 135 of Encyclopedia Math. Appl., Cambridge Univ. Press, Cambridge, (2010), 410–451.  Google Scholar

[2]

R. ArtusoG. Casati and D. L. Shepelyansky, Breakdown of universality in renormalization dynamics for critical invariant torus, Europhys. Lett., 15 (1991), 381-386.  doi: 10.1209/0295-5075/15/4/003.  Google Scholar

[3]

S. Aubry and G. Abramovici, Chaotic trajectories in the standard map. The concept of anti-integrability, Phys. D, 43 (1990), 199-219.  doi: 10.1016/0167-2789(90)90133-A.  Google Scholar

[4]

R. BalasubramanianS. H. Kulkarni and R. Radha, Solution of a tridiagonal operator equation, Linear Algebra Appl., 414 (2006), 389-405.  doi: 10.1016/j.laa.2005.10.014.  Google Scholar

[5]

T. Blass and R. de la Llave, The analyticity breakdown for Frenkel-Kontorova models in quasi-periodic media: Numerical explorations, J. Stat. Phys., 150 (2013), 1183-1200.  doi: 10.1007/s10955-013-0718-8.  Google Scholar

[6]

O. M. Braun and Y. S. Kivshar, The Frenkel-Kontorova Model, Texts and Monographs in Physics, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-662-10331-9.  Google Scholar

[7]

J.-M. GambaudoP. Guiraud and S. Petite, Minimal configurations for the Frenkel-Kontorova model on a quasicrystal, Comm. Math. Phys., 265 (2006), 165-188.  doi: 10.1007/s00220-006-1531-x.  Google Scholar

[8]

E. GaribaldiS. Petite and P. Thieullen, Calibrated configurations for Frenkel-Kontorova type models in almost periodic environments, Ann. Henri Poincaré, 18 (2017), 2905-2943.  doi: 10.1007/s00023-017-0589-7.  Google Scholar

[9]

Y. Huang and W. F. McColl, Analytical inversion of general tridiagonal matrices, J. Phys. A, 30 (1997), 7919-7933.  doi: 10.1088/0305-4470/30/22/026.  Google Scholar

[10]

P.-L. Lions and P. E. Souganidis, Correctors for the homogenization of Hamilton-Jacobi equations in the stationary ergodic setting, Comm. Pure Appl. Math., 56 (2003), 1501-1524.  doi: 10.1002/cpa.10101.  Google Scholar

[11]

L. Sadun, Topology of Tiling Spaces, vol. 46 of University Lecture Series, American Mathematical Society, Providence, RI, 2008. doi: 10.1090/ulect/046.  Google Scholar

[12]

A. A. Selvan and R. Radha, Invertibility of a tridiagonal operator with an application to a non-uniform sampling problem, Linear Multilinear Algebra, 65 (2017), 973-990.  doi: 10.1080/03081087.2016.1217978.  Google Scholar

[13]

X. Su and R. de la Llave, KAM theory for quasi-periodic equilibria in one-dimensional quasi-periodic media, SIAM J. Math. Anal., 44 (2012), 3901-3927.  doi: 10.1137/12087160X.  Google Scholar

[14]

X. Su and R. de la Llave, A continuous family of equilibria in ferromagnetic media are ground states, Comm. Math. Phys., 354 (2017), 459-475.  doi: 10.1007/s00220-017-2913-y.  Google Scholar

[15]

S. Tompaidis, Numerical study of invariant sets of a quasiperiodic perturbation of a symplectic map, Experiment. Math., 5 (1996), 211–230, http://projecteuclid.org/euclid.em/1047915102. doi: 10.1080/10586458.1996.10504589.  Google Scholar

[16]

R. Treviño, Equilibrium configurations for generalized Frenkel-Kontorova models on quasicrystals, Comm. Math. Phys., 371 (2019), 1-17.  doi: 10.1007/s00220-019-03557-7.  Google Scholar

Figure 1.  the two possible position of $ x $ in the quasi-crystal
Figure 2.  the graph of $ \zeta $
Figure 3.  the graph of $ V $
Figure 4.  Branched Manifold $ \mathcal{B}_l $
Figure 5.  the map $ \kappa_l $
Figure 6.  The red points are the graph of $ (\theta_{5,n})_{n\in[-50,50]} $ and the green line is $ y = (3\tau+1)/2x $
Figure 7.  The configuration $ T_{2n+1}^{-1}y_{n} $ for $ h $ and $ h_1 $ when $ n = 500 $
[1]

Wen-Xin Qin. Rotating modes in the Frenkel-Kontorova model with periodic interaction potential. Discrete & Continuous Dynamical Systems, 2010, 27 (3) : 1147-1158. doi: 10.3934/dcds.2010.27.1147

[2]

Gennadiy Burlak, Salomon García-Paredes. Matter-wave solitons with a minimal number of particles in a time-modulated quasi-periodic potential. Conference Publications, 2015, 2015 (special) : 169-175. doi: 10.3934/proc.2015.0169

[3]

Wen-Long Li, Xiaojun Cui. Multitransition solutions for a generalized Frenkel-Kontorova model. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6135-6158. doi: 10.3934/dcds.2020273

[4]

Nikolai Edeko. On the isomorphism problem for non-minimal transformations with discrete spectrum. Discrete & Continuous Dynamical Systems, 2019, 39 (10) : 6001-6021. doi: 10.3934/dcds.2019262

[5]

Wen-Xin Qin. Modulation of uniform motion in diatomic Frenkel-Kontorova model. Discrete & Continuous Dynamical Systems, 2014, 34 (9) : 3773-3788. doi: 10.3934/dcds.2014.34.3773

[6]

Claudia Valls. On the quasi-periodic solutions of generalized Kaup systems. Discrete & Continuous Dynamical Systems, 2015, 35 (1) : 467-482. doi: 10.3934/dcds.2015.35.467

[7]

Peng Huang, Xiong Li, Bin Liu. Invariant curves of smooth quasi-periodic mappings. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 131-154. doi: 10.3934/dcds.2018006

[8]

Jean Bourgain. On quasi-periodic lattice Schrödinger operators. Discrete & Continuous Dynamical Systems, 2004, 10 (1&2) : 75-88. doi: 10.3934/dcds.2004.10.75

[9]

Qihuai Liu, Dingbian Qian, Zhiguo Wang. Quasi-periodic solutions of the Lotka-Volterra competition systems with quasi-periodic perturbations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1537-1550. doi: 10.3934/dcdsb.2012.17.1537

[10]

Yanling Shi, Junxiang Xu, Xindong Xu. Quasi-periodic solutions of generalized Boussinesq equation with quasi-periodic forcing. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2501-2519. doi: 10.3934/dcdsb.2017104

[11]

Lei Jiao, Yiqian Wang. The construction of quasi-periodic solutions of quasi-periodic forced Schrödinger equation. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1585-1606. doi: 10.3934/cpaa.2009.8.1585

[12]

Mikhail B. Sevryuk. Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman's method. Discrete & Continuous Dynamical Systems, 2007, 18 (2&3) : 569-595. doi: 10.3934/dcds.2007.18.569

[13]

Alessandro Fonda, Antonio J. Ureña. Periodic, subharmonic, and quasi-periodic oscillations under the action of a central force. Discrete & Continuous Dynamical Systems, 2011, 29 (1) : 169-192. doi: 10.3934/dcds.2011.29.169

[14]

Xavier Blanc, Claude Le Bris. Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings. Networks & Heterogeneous Media, 2010, 5 (1) : 1-29. doi: 10.3934/nhm.2010.5.1

[15]

Yanling Shi, Junxiang Xu. Quasi-periodic solutions for a class of beam equation system. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 31-53. doi: 10.3934/dcdsb.2019171

[16]

Jinhao Liang. Positive Lyapunov exponent for a class of quasi-periodic cocycles. Discrete & Continuous Dynamical Systems, 2020, 40 (3) : 1361-1387. doi: 10.3934/dcds.2020080

[17]

Russell Johnson, Francesca Mantellini. A nonautonomous transcritical bifurcation problem with an application to quasi-periodic bubbles. Discrete & Continuous Dynamical Systems, 2003, 9 (1) : 209-224. doi: 10.3934/dcds.2003.9.209

[18]

Siqi Xu, Dongfeng Yan. Smooth quasi-periodic solutions for the perturbed mKdV equation. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1857-1869. doi: 10.3934/cpaa.2016019

[19]

Xiaoping Yuan. Quasi-periodic solutions of nonlinear wave equations with a prescribed potential. Discrete & Continuous Dynamical Systems, 2006, 16 (3) : 615-634. doi: 10.3934/dcds.2006.16.615

[20]

Meina Gao, Jianjun Liu. Quasi-periodic solutions for derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2012, 32 (6) : 2101-2123. doi: 10.3934/dcds.2012.32.2101

2020 Impact Factor: 1.833

Article outline

Figures and Tables

[Back to Top]