doi: 10.3934/era.2021080
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

On the number of critical points of solutions of semilinear elliptic equations

Dipartimento di Matematica, Università di Roma "La Sapienza", P.le A. Moro 2 - 00185 Roma, Italy

Dedicated to Norman Dancer, a gentleman of mathematical analysis.

Received  July 2021 Revised  August 2021 Early access October 2021

Fund Project: Partially supported by Indam-Gnampa

In this survey we discuss old and new results on the number of critical points of solutions of the problem
$ \begin{equation} \begin{cases} -\Delta u = f(u)&in\ \Omega\\ u = 0&on\ \partial \Omega \end{cases} \;\;\;\;\;\;\;\;(0.1)\end{equation} $
where
$ \Omega\subset \mathbb{R}^N $
with
$ N\ge2 $
is a smooth bounded domain. Both cases where
$ u $
is a positive or nodal solution will be considered.
Citation: Massimo Grossi. On the number of critical points of solutions of semilinear elliptic equations. Electronic Research Archive, doi: 10.3934/era.2021080
References:
[1]

A. AckerL. E. Payne and G. Philippin, On the convexity of level lines of the fundamental mode in the clamped membrane problem, and the existence of convex solutions in a related free boundary problem, Z. Angew. Math. Phys., 32 (1981), 683-694.  doi: 10.1007/BF00946979.  Google Scholar

[2]

G. Alessandrini, Nodal lines of eigenfunctions of the fixed membrane problem in general convex domains, Comment. Math. Helv., 69 (1994), 142-154.  doi: 10.1007/BF02564478.  Google Scholar

[3]

G. Alessandrini and R. Magnanini, The index of isolated critical points and solutions of elliptic equations in the plane, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 19 (1992), 567-589, http://www.numdam.org/item?id=ASNSP_1992_4_19_4_567_0.  Google Scholar

[4]

J. Arango and A. Gómez, Critical points of solutions to elliptic problems in planar domains, Commun. Pure Appl. Anal., 10 (2011), 327-338.  doi: 10.3934/cpaa.2011.10.327.  Google Scholar

[5]

A. BahriY. Li and O. Rey, On a variational problem with lack of compactness: The topological effect of the critical points at infinity, Calc. Var. Partial Differential Equations, 3 (1995), 67-93.  doi: 10.1007/BF01190892.  Google Scholar

[6]

P. Berard and B. Helffer, Nodal sets of eigenfunctions, Antonie Stern's results revisited, in Actes du séminaire de Théorie spectrale et géométrie, Vol. 32, Institut Fourier, Cedram, (2014-2015), 1-37. Google Scholar

[7]

H. J. Brascamp and E. H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Functional Analysis, 22 (1976), 366-389.  doi: 10.1016/0022-1236(76)90004-5.  Google Scholar

[8]

X. Cabré and S. Chanillo, Stable solutions of semilinear elliptic problems in convex domains, Selecta Math. (N.S.), 4 (1998), 1-10.  doi: 10.1007/s000290050022.  Google Scholar

[9]

D. CaoN. E. DancerE. S. Noussair and S. Yan, On the existence and profile of multi-peaked solutions to singularly perturbed semilinear Dirichlet problems, Discrete Contin. Dynam. Systems, 2 (1996), 221-236.  doi: 10.3934/dcds.1996.2.221.  Google Scholar

[10]

M. ClappM. Musso and A. Pistoia, Multipeak solutions to the Bahri-Coron problem in domains with a shrinking hole, J. Funct. Anal., 256 (2009), 275-306.  doi: 10.1016/j.jfa.2008.06.034.  Google Scholar

[11]

J. Dahne, J. Gómez-Serrano and K. Hou, A counterexample to payne's nodal line conjecture with few holes, Commun. Nonlinear Sci. Numer. Simul., 103 (2021), Paper No. 105957, 13 pp. doi: 10.1016/j.cnsns.2021.105957.  Google Scholar

[12]

L. Damascelli, On the nodal set of the second eigenfunction of the Laplacian in symmetric domains in $\Bbb R^N$, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 11 (2000), 175-181.   Google Scholar

[13]

E. N. Dancer and J. Wei, Sign-changing solutions for supercritical elliptic problems in domains with small holes, Manuscripta Math., 123 (2007), 493-511.  doi: 10.1007/s00229-007-0110-6.  Google Scholar

[14]

F. De Regibus and M. Grossi, On the number of critical points of stable solutions in bounded strip-like domains, 2021. Google Scholar

[15]

F. De Regibus, M. Grossi and D. Mukherjee, Uniqueness of the critical point for semi-stable solutions in $\Bbb R^2$, Calc. Var. Partial Differential Equations, 60 (2021), Paper No. 25, 13 pp. doi: 10.1007/s00526-020-01903-5.  Google Scholar

[16]

M. del PinoP. Felmer and M. Musso, Multi-peak solutions for super-critical elliptic problems in domains with small holes, J. Differential Equations, 182 (2002), 511-540.  doi: 10.1006/jdeq.2001.4098.  Google Scholar

[17]

M. del Pino and J. Wei, Problèmes elliptiques supercritiques dans des domaines avec de petits trous, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 507-520.  doi: 10.1016/j.anihpc.2006.03.001.  Google Scholar

[18]

B. GidasW. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.  doi: 10.1007/BF01221125.  Google Scholar

[19]

F. Gladiali and M. Grossi, On the number of critical points of solutions of semilinear equations in $\mathbb{R}^2$, to appear in Amer. Jour. Math.. Google Scholar

[20]

F. Gladiali and M. Grossi, Strict convexity of level sets of solutions of some nonlinear elliptic equations, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 363-373.  doi: 10.1017/S0308210500003255.  Google Scholar

[21]

D. Grieser and D. Jerison, Asymptotics of the first nodal line of a convex domain, Invent. Math., 125 (1996), 197-219.  doi: 10.1007/s002220050073.  Google Scholar

[22]

M. Grossi and P. Luo, On the number and location of critical points of solutions of nonlinear elliptic equations in domains with a small hole, 2020. Google Scholar

[23]

M. Grossi and R. Molle, On the shape of the solutions of some semilinear elliptic problems, Commun. Contemp. Math., 5 (2003), 85-99.  doi: 10.1142/S0219199703000914.  Google Scholar

[24]

F. HamelN. Nadirashvili and Y. Sire, Convexity of level sets for elliptic problems in convex domains or convex rings: Two counterexamples, Amer. J. Math., 138 (2016), 499-527.  doi: 10.1353/ajm.2016.0012.  Google Scholar

[25]

M. Hoffmann-OstenhofT. Hoffmann-Ostenhof and N. Nadirashvili, The nodal line of the second eigenfunction of the laplacian in $\Bbb R^2$ can be closed, Duke Math. J., 90 (1997), 631-640.  doi: 10.1215/S0012-7094-97-09017-7.  Google Scholar

[26]

D. Jerison, The diameter of the first nodal line of a convex domain, Ann. of Math. (2), 141 (1995), 1-33.  doi: 10.2307/2118626.  Google Scholar

[27]

B. Kawohl, Rearrangements and Convexity of Level Sets in PDE, vol. 1150 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1985. doi: 10.1007/BFb0075060.  Google Scholar

[28]

G. LiS. Yan and J. Yang, An elliptic problem with critical growth in domains with shrinking holes, J. Differential Equations, 198 (2004), 275-300.  doi: 10.1016/j.jde.2003.06.001.  Google Scholar

[29]

Y. Y. Li, Existence of many positive solutions of semilinear elliptic equations on annulus, J. Differential Equations, 83 (1990), 348-367.  doi: 10.1016/0022-0396(90)90062-T.  Google Scholar

[30]

C. S. Lin, On the second eigenfunctions of the Laplacian in $\mathbb{R}^2$, Comm. Math. Phys., 111 (1987), 161-166. http://projecteuclid.org/euclid.cmp/1104159536. doi: 10.1007/BF01217758.  Google Scholar

[31]

L. G. Makar-Limanov, The solution of the Dirichlet problem for the equation $\Delta u = -1$ in a convex region, Mat. Zametki, 9 (1971), 89-92.   Google Scholar

[32]

A. D. Melas, On the nodal line of the second eigenfunction of the Laplacian in $\mathbb{R}^2$, J. Differential Geom., 35 (1992), 255-263, http://projecteuclid.org/euclid.jdg/1214447811.  Google Scholar

[33]

M. Morse and G. B. Van Schaack, The critical point theory under general boundary conditions, Ann. of Math. (2), 35 (1934), 545-571.  doi: 10.2307/1968750.  Google Scholar

[34]

F. Pacella, Symmetry results for solutions of semilinear elliptic equations with convex nonlinearities, J. Funct. Anal., 192 (2002), 271-282.  doi: 10.1006/jfan.2001.3901.  Google Scholar

[35]

L. E. Payne, Isoperimetric inequalities and their applications, SIAM Rev., 9 (1967), 453-488.  doi: 10.1137/1009070.  Google Scholar

[36]

L. E. Payne, On two conjectures in the fixed membrane eigenvalue problem, Z. Angew. Math. Phys., 24 (1973), 721-729.  doi: 10.1007/BF01597076.  Google Scholar

[37]

L. Qi, Extrema of a real polynomial, J. Global Optim., 30 (2004), 405-433.  doi: 10.1007/s10898-004-6875-1.  Google Scholar

[38]

O. Rey, Sur un problème variationnel non compact: L'effet de petits trous dans le domaine, C. R. Acad. Sci. Paris Sér. I Math., 308 (1989), 349-352.   Google Scholar

[39]

E. H. Rothe, A relation between the type numbers of a critical point and the index of the corresponding field of gradient vectors, Math. Nachr., 4 (1951), 12-17.   Google Scholar

[40]

A. Stern, Bemerkungen über Asymptotisches Verhalten von Eigenwerten und Eigenfunktionen, PhD Thesis, Druck der Dieterichschen UniversitätsBuchdruckerei (W. Fr. Kaestner), Göttingen, Germany, 1925. Google Scholar

[41]

H. Whitney, A function not constant on a connected set of critical points, Duke Math. J., 1 (1935), 514-517.  doi: 10.1215/S0012-7094-35-00138-7.  Google Scholar

[42]

S. T. Yau, Problem section, in Seminar on Differential Geometry, vol. 102 of Ann. of Math. Stud., Princeton Univ. Press, Princeton, N.J., 1982, 669–706.  Google Scholar

show all references

References:
[1]

A. AckerL. E. Payne and G. Philippin, On the convexity of level lines of the fundamental mode in the clamped membrane problem, and the existence of convex solutions in a related free boundary problem, Z. Angew. Math. Phys., 32 (1981), 683-694.  doi: 10.1007/BF00946979.  Google Scholar

[2]

G. Alessandrini, Nodal lines of eigenfunctions of the fixed membrane problem in general convex domains, Comment. Math. Helv., 69 (1994), 142-154.  doi: 10.1007/BF02564478.  Google Scholar

[3]

G. Alessandrini and R. Magnanini, The index of isolated critical points and solutions of elliptic equations in the plane, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 19 (1992), 567-589, http://www.numdam.org/item?id=ASNSP_1992_4_19_4_567_0.  Google Scholar

[4]

J. Arango and A. Gómez, Critical points of solutions to elliptic problems in planar domains, Commun. Pure Appl. Anal., 10 (2011), 327-338.  doi: 10.3934/cpaa.2011.10.327.  Google Scholar

[5]

A. BahriY. Li and O. Rey, On a variational problem with lack of compactness: The topological effect of the critical points at infinity, Calc. Var. Partial Differential Equations, 3 (1995), 67-93.  doi: 10.1007/BF01190892.  Google Scholar

[6]

P. Berard and B. Helffer, Nodal sets of eigenfunctions, Antonie Stern's results revisited, in Actes du séminaire de Théorie spectrale et géométrie, Vol. 32, Institut Fourier, Cedram, (2014-2015), 1-37. Google Scholar

[7]

H. J. Brascamp and E. H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Functional Analysis, 22 (1976), 366-389.  doi: 10.1016/0022-1236(76)90004-5.  Google Scholar

[8]

X. Cabré and S. Chanillo, Stable solutions of semilinear elliptic problems in convex domains, Selecta Math. (N.S.), 4 (1998), 1-10.  doi: 10.1007/s000290050022.  Google Scholar

[9]

D. CaoN. E. DancerE. S. Noussair and S. Yan, On the existence and profile of multi-peaked solutions to singularly perturbed semilinear Dirichlet problems, Discrete Contin. Dynam. Systems, 2 (1996), 221-236.  doi: 10.3934/dcds.1996.2.221.  Google Scholar

[10]

M. ClappM. Musso and A. Pistoia, Multipeak solutions to the Bahri-Coron problem in domains with a shrinking hole, J. Funct. Anal., 256 (2009), 275-306.  doi: 10.1016/j.jfa.2008.06.034.  Google Scholar

[11]

J. Dahne, J. Gómez-Serrano and K. Hou, A counterexample to payne's nodal line conjecture with few holes, Commun. Nonlinear Sci. Numer. Simul., 103 (2021), Paper No. 105957, 13 pp. doi: 10.1016/j.cnsns.2021.105957.  Google Scholar

[12]

L. Damascelli, On the nodal set of the second eigenfunction of the Laplacian in symmetric domains in $\Bbb R^N$, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 11 (2000), 175-181.   Google Scholar

[13]

E. N. Dancer and J. Wei, Sign-changing solutions for supercritical elliptic problems in domains with small holes, Manuscripta Math., 123 (2007), 493-511.  doi: 10.1007/s00229-007-0110-6.  Google Scholar

[14]

F. De Regibus and M. Grossi, On the number of critical points of stable solutions in bounded strip-like domains, 2021. Google Scholar

[15]

F. De Regibus, M. Grossi and D. Mukherjee, Uniqueness of the critical point for semi-stable solutions in $\Bbb R^2$, Calc. Var. Partial Differential Equations, 60 (2021), Paper No. 25, 13 pp. doi: 10.1007/s00526-020-01903-5.  Google Scholar

[16]

M. del PinoP. Felmer and M. Musso, Multi-peak solutions for super-critical elliptic problems in domains with small holes, J. Differential Equations, 182 (2002), 511-540.  doi: 10.1006/jdeq.2001.4098.  Google Scholar

[17]

M. del Pino and J. Wei, Problèmes elliptiques supercritiques dans des domaines avec de petits trous, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 507-520.  doi: 10.1016/j.anihpc.2006.03.001.  Google Scholar

[18]

B. GidasW. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.  doi: 10.1007/BF01221125.  Google Scholar

[19]

F. Gladiali and M. Grossi, On the number of critical points of solutions of semilinear equations in $\mathbb{R}^2$, to appear in Amer. Jour. Math.. Google Scholar

[20]

F. Gladiali and M. Grossi, Strict convexity of level sets of solutions of some nonlinear elliptic equations, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 363-373.  doi: 10.1017/S0308210500003255.  Google Scholar

[21]

D. Grieser and D. Jerison, Asymptotics of the first nodal line of a convex domain, Invent. Math., 125 (1996), 197-219.  doi: 10.1007/s002220050073.  Google Scholar

[22]

M. Grossi and P. Luo, On the number and location of critical points of solutions of nonlinear elliptic equations in domains with a small hole, 2020. Google Scholar

[23]

M. Grossi and R. Molle, On the shape of the solutions of some semilinear elliptic problems, Commun. Contemp. Math., 5 (2003), 85-99.  doi: 10.1142/S0219199703000914.  Google Scholar

[24]

F. HamelN. Nadirashvili and Y. Sire, Convexity of level sets for elliptic problems in convex domains or convex rings: Two counterexamples, Amer. J. Math., 138 (2016), 499-527.  doi: 10.1353/ajm.2016.0012.  Google Scholar

[25]

M. Hoffmann-OstenhofT. Hoffmann-Ostenhof and N. Nadirashvili, The nodal line of the second eigenfunction of the laplacian in $\Bbb R^2$ can be closed, Duke Math. J., 90 (1997), 631-640.  doi: 10.1215/S0012-7094-97-09017-7.  Google Scholar

[26]

D. Jerison, The diameter of the first nodal line of a convex domain, Ann. of Math. (2), 141 (1995), 1-33.  doi: 10.2307/2118626.  Google Scholar

[27]

B. Kawohl, Rearrangements and Convexity of Level Sets in PDE, vol. 1150 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1985. doi: 10.1007/BFb0075060.  Google Scholar

[28]

G. LiS. Yan and J. Yang, An elliptic problem with critical growth in domains with shrinking holes, J. Differential Equations, 198 (2004), 275-300.  doi: 10.1016/j.jde.2003.06.001.  Google Scholar

[29]

Y. Y. Li, Existence of many positive solutions of semilinear elliptic equations on annulus, J. Differential Equations, 83 (1990), 348-367.  doi: 10.1016/0022-0396(90)90062-T.  Google Scholar

[30]

C. S. Lin, On the second eigenfunctions of the Laplacian in $\mathbb{R}^2$, Comm. Math. Phys., 111 (1987), 161-166. http://projecteuclid.org/euclid.cmp/1104159536. doi: 10.1007/BF01217758.  Google Scholar

[31]

L. G. Makar-Limanov, The solution of the Dirichlet problem for the equation $\Delta u = -1$ in a convex region, Mat. Zametki, 9 (1971), 89-92.   Google Scholar

[32]

A. D. Melas, On the nodal line of the second eigenfunction of the Laplacian in $\mathbb{R}^2$, J. Differential Geom., 35 (1992), 255-263, http://projecteuclid.org/euclid.jdg/1214447811.  Google Scholar

[33]

M. Morse and G. B. Van Schaack, The critical point theory under general boundary conditions, Ann. of Math. (2), 35 (1934), 545-571.  doi: 10.2307/1968750.  Google Scholar

[34]

F. Pacella, Symmetry results for solutions of semilinear elliptic equations with convex nonlinearities, J. Funct. Anal., 192 (2002), 271-282.  doi: 10.1006/jfan.2001.3901.  Google Scholar

[35]

L. E. Payne, Isoperimetric inequalities and their applications, SIAM Rev., 9 (1967), 453-488.  doi: 10.1137/1009070.  Google Scholar

[36]

L. E. Payne, On two conjectures in the fixed membrane eigenvalue problem, Z. Angew. Math. Phys., 24 (1973), 721-729.  doi: 10.1007/BF01597076.  Google Scholar

[37]

L. Qi, Extrema of a real polynomial, J. Global Optim., 30 (2004), 405-433.  doi: 10.1007/s10898-004-6875-1.  Google Scholar

[38]

O. Rey, Sur un problème variationnel non compact: L'effet de petits trous dans le domaine, C. R. Acad. Sci. Paris Sér. I Math., 308 (1989), 349-352.   Google Scholar

[39]

E. H. Rothe, A relation between the type numbers of a critical point and the index of the corresponding field of gradient vectors, Math. Nachr., 4 (1951), 12-17.   Google Scholar

[40]

A. Stern, Bemerkungen über Asymptotisches Verhalten von Eigenwerten und Eigenfunktionen, PhD Thesis, Druck der Dieterichschen UniversitätsBuchdruckerei (W. Fr. Kaestner), Göttingen, Germany, 1925. Google Scholar

[41]

H. Whitney, A function not constant on a connected set of critical points, Duke Math. J., 1 (1935), 514-517.  doi: 10.1215/S0012-7094-35-00138-7.  Google Scholar

[42]

S. T. Yau, Problem section, in Seminar on Differential Geometry, vol. 102 of Ann. of Math. Stud., Princeton Univ. Press, Princeton, N.J., 1982, 669–706.  Google Scholar

Figure 1.  A picture of D with $ c = \frac1{300000} $
Figure 2.  The domain $ \Omega $ in Theorem 3.2
Figure 3.  Domain $ \Omega_ \varepsilon $ with $ k = 2 $ and level set $ u_ \varepsilon = c $
Figure 4.  Nodal line of an eigenfuncion in the rectangle (Stern's PhD thesis)
[1]

Enrique R. Pujals, Federico Rodriguez Hertz. Critical points for surface diffeomorphisms. Journal of Modern Dynamics, 2007, 1 (4) : 615-648. doi: 10.3934/jmd.2007.1.615

[2]

Keith Promislow, Hang Zhang. Critical points of functionalized Lagrangians. Discrete & Continuous Dynamical Systems, 2013, 33 (4) : 1231-1246. doi: 10.3934/dcds.2013.33.1231

[3]

Wei Gao, Juan Luis García Guirao, Mahmoud Abdel-Aty, Wenfei Xi. An independent set degree condition for fractional critical deleted graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 877-886. doi: 10.3934/dcdss.2019058

[4]

Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391

[5]

P. Candito, S. A. Marano, D. Motreanu. Critical points for a class of nondifferentiable functions and applications. Discrete & Continuous Dynamical Systems, 2005, 13 (1) : 175-194. doi: 10.3934/dcds.2005.13.175

[6]

Jaime Arango, Adriana Gómez. Critical points of solutions to elliptic problems in planar domains. Communications on Pure & Applied Analysis, 2011, 10 (1) : 327-338. doi: 10.3934/cpaa.2011.10.327

[7]

Stefano Almi, Massimo Fornasier, Richard Huber. Data-driven evolutions of critical points. Foundations of Data Science, 2020, 2 (3) : 207-255. doi: 10.3934/fods.2020011

[8]

Marc Briane. Isotropic realizability of electric fields around critical points. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 353-372. doi: 10.3934/dcdsb.2014.19.353

[9]

Jingxian Sun, Shouchuan Hu. Flow-invariant sets and critical point theory. Discrete & Continuous Dynamical Systems, 2003, 9 (2) : 483-496. doi: 10.3934/dcds.2003.9.483

[10]

Antonio Ambrosetti, Massimiliano Berti. Applications of critical point theory to homoclinics and complex dynamics. Conference Publications, 1998, 1998 (Special) : 72-78. doi: 10.3934/proc.1998.1998.72

[11]

Cristian Bereanu, Petru Jebelean. Multiple critical points for a class of periodic lower semicontinuous functionals. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 47-66. doi: 10.3934/dcds.2013.33.47

[12]

Yu Chen, Yanheng Ding, Suhong Li. Existence and concentration for Kirchhoff type equations around topologically critical points of the potential. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1641-1671. doi: 10.3934/cpaa.2017079

[13]

Jungsoo Kang. Survival of infinitely many critical points for the Rabinowitz action functional. Journal of Modern Dynamics, 2010, 4 (4) : 733-739. doi: 10.3934/jmd.2010.4.733

[14]

Kensuke Yoshizawa. The critical points of the elastic energy among curves pinned at endpoints. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021122

[15]

Yaping Wu, Xiuxia Xing. Stability of traveling waves with critical speeds for $P$-degree Fisher-type equations. Discrete & Continuous Dynamical Systems, 2008, 20 (4) : 1123-1139. doi: 10.3934/dcds.2008.20.1123

[16]

Salvatore A. Marano, Sunra Mosconi. Non-smooth critical point theory on closed convex sets. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1187-1202. doi: 10.3934/cpaa.2014.13.1187

[17]

Alexander Blokh, Michał Misiurewicz. Dense set of negative Schwarzian maps whose critical points have minimal limit sets. Discrete & Continuous Dynamical Systems, 1998, 4 (1) : 141-158. doi: 10.3934/dcds.1998.4.141

[18]

Jaume Llibre, Jesús S. Pérez del Río, J. Angel Rodríguez. Structural stability of planar semi-homogeneous polynomial vector fields applications to critical points and to infinity. Discrete & Continuous Dynamical Systems, 2000, 6 (4) : 809-828. doi: 10.3934/dcds.2000.6.809

[19]

Fengjuan Meng, Chengkui Zhong. Multiple equilibrium points in global attractor for the weakly damped wave equation with critical exponent. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 217-230. doi: 10.3934/dcdsb.2014.19.217

[20]

Olivier Druet, Emmanuel Hebey and Frederic Robert. A $C^0$-theory for the blow-up of second order elliptic equations of critical Sobolev growth. Electronic Research Announcements, 2003, 9: 19-25.

2020 Impact Factor: 1.833

Metrics

  • PDF downloads (28)
  • HTML views (36)
  • Cited by (0)

Other articles
by authors

[Back to Top]