doi: 10.3934/era.2021081
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Planar vortices in a bounded domain with a hole

1. 

School of Mathematics and Statistics, Central China Normal University, Wuhan, China

2. 

Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100190, China

* Corresponding author: Shusen Yan

Received  August 2021 Early access October 2021

In this paper, we consider the inviscid, incompressible planar flows in a bounded domain with a hole and construct stationary classical solutions with single vortex core, which is closed to the hole. This is carried out by constructing solutions to the following semilinear elliptic problem
$ \begin{equation} \begin{cases} -\Delta \psi = \lambda(\psi-\frac{\kappa}{4\pi}\ln\lambda)_+^p,\quad &\text{in}\; \Omega,\\ \psi = \rho_\lambda,\quad &\text{on}\; \partial O_0,\\ \psi = 0,\quad &\text{on}\; \partial\Omega_0, \end{cases} \;\;\;\;\;\;\;\;(1)\end{equation} $
where
$ p>1 $
,
$ \kappa $
is a positive constant,
$ \rho_\lambda $
is a constant, depending on
$ \lambda $
,
$ \Omega = \Omega_0\setminus \bar{O}_0 $
and
$ \Omega_0 $
,
$ O_0 $
are two planar bounded simply-connected domains. We show that under the assumption
$ (\ln\lambda)^\sigma\leq\rho_\lambda\leq (\ln\lambda)^{1-\sigma} $
for some
$ \sigma>0 $
small, (1) has a solution
$ \psi_\lambda $
, whose vorticity set
$ \{y\in \Omega:\, \psi(y)-\kappa+\rho_\lambda\eta(y)>0\} $
shrinks to the boundary of the hole as
$ \lambda\to +\infty $
.
Citation: Shusen Yan, Weilin Yu. Planar vortices in a bounded domain with a hole. Electronic Research Archive, doi: 10.3934/era.2021081
References:
[1]

A. Ambrosetti and J. Yang, Asymptotic behaviour in planar vortex theory, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 1 (1990), 285-291.   Google Scholar

[2]

V. I. Arnold and B. A. Khesin, Topological Methods in Hydrodynamics, Second edition. Applied Mathematical Sciences, 125. Springer, Cham, 2021. doi: 10.1007/978-3-030-74278-2.  Google Scholar

[3]

M. S. Berger and L. E. Fraenkel, Nonlinear desingularization in certain free-boundary problems, Comm. Math. Phys., 77 (1980), 149-172.  doi: 10.1007/BF01982715.  Google Scholar

[4]

G. R. Burton, Variational problems on classes of rearrangements and multiple configurations for steady vortices, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 295-319.  doi: 10.1016/S0294-1449(16)30320-1.  Google Scholar

[5]

G. R. Burton, Rearrangements of functions, saddle points and uncountable families of steady configurations for a vortex, Acta Math., 163 (1989), 291-309.  doi: 10.1007/BF02392738.  Google Scholar

[6]

D. CaoZ. Liu and J. Wei, Regularization of point vortices for the Euler equation in dimension two, Arch. Ration. Mech. Anal., 212 (2014), 179-217.  doi: 10.1007/s00205-013-0692-y.  Google Scholar

[7]

D. CaoS. Peng and S. Yan, Multiplicity of solutions for the plasma problem in two dimensions, Adv. Math., 225 (2010), 2741-2785.  doi: 10.1016/j.aim.2010.05.012.  Google Scholar

[8]

D. CaoS. Peng and S. Yan, Planar vortex patch problem in incompressible steady flow, Adv. Math., 270 (2015), 263-301.  doi: 10.1016/j.aim.2014.09.027.  Google Scholar

[9]

D. CaoS. Peng and S. Yan, Regularization of planar vortices for the incompressible flow, Acta Math. Sci. Ser. B (Engl. Ed.), 38 (2018), 1443-1467.  doi: 10.1016/S0252-9602(18)30827-0.  Google Scholar

[10]

E. N. Dancer and S. Yan, The Lazer-McKenna conjecture and a free boundary problem in two dimensions, J. Lond. Math. Soc., 78 (2008), 639-662.  doi: 10.1112/jlms/jdn045.  Google Scholar

[11]

A. R. Elcrat and K. G. Miller, Steady vortex flows with circulation past asymmetric obstacles, Comm. Partial Differential Equations, 2 (1987), 1095-1115.  doi: 10.1080/03605308708820520.  Google Scholar

[12]

D. IftimieM. C. Lopes Filho and H. J. Nussenzveig Lopes, Two dimensional incompressible ideal flow around a small obstacle, Commun. Partial Diff. Equ., 28 (2003), 349-379.  doi: 10.1081/PDE-120019386.  Google Scholar

[13]

C. Lacave, Two dimensional incompressible ideal flow around a thin obstacle tending to a curve, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1121-1148.  doi: 10.1016/j.anihpc.2008.06.004.  Google Scholar

[14]

M. C. Lopes Filho, Vortex dynamics in a two dimensional domain with holes and the small obstacle limit, SIAM J. Math. Anal., 39 (2007), 422-436.  doi: 10.1137/050647967.  Google Scholar

[15]

D. Smets and J. Van Schaftingen, Desingulariation of vortices for the Euler equation, Arch. Rational Mech. Anal., 198 (2010), 869-925.  doi: 10.1007/s00205-010-0293-y.  Google Scholar

[16]

B. Turkington, On steady vortex flow in two dimensions. Ⅰ, Ⅱ, Comm. Partial Differential Equations, 8 (1983), 999–1030, 1031–1071. doi: 10.1080/03605308308820293.  Google Scholar

[17]

J. Yang, Existence and asymptotic behavior in planar vortex theory, Math. Models Methods Appl. Sci., 1 (1991), 461-475.  doi: 10.1142/S021820259100023X.  Google Scholar

show all references

References:
[1]

A. Ambrosetti and J. Yang, Asymptotic behaviour in planar vortex theory, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 1 (1990), 285-291.   Google Scholar

[2]

V. I. Arnold and B. A. Khesin, Topological Methods in Hydrodynamics, Second edition. Applied Mathematical Sciences, 125. Springer, Cham, 2021. doi: 10.1007/978-3-030-74278-2.  Google Scholar

[3]

M. S. Berger and L. E. Fraenkel, Nonlinear desingularization in certain free-boundary problems, Comm. Math. Phys., 77 (1980), 149-172.  doi: 10.1007/BF01982715.  Google Scholar

[4]

G. R. Burton, Variational problems on classes of rearrangements and multiple configurations for steady vortices, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 295-319.  doi: 10.1016/S0294-1449(16)30320-1.  Google Scholar

[5]

G. R. Burton, Rearrangements of functions, saddle points and uncountable families of steady configurations for a vortex, Acta Math., 163 (1989), 291-309.  doi: 10.1007/BF02392738.  Google Scholar

[6]

D. CaoZ. Liu and J. Wei, Regularization of point vortices for the Euler equation in dimension two, Arch. Ration. Mech. Anal., 212 (2014), 179-217.  doi: 10.1007/s00205-013-0692-y.  Google Scholar

[7]

D. CaoS. Peng and S. Yan, Multiplicity of solutions for the plasma problem in two dimensions, Adv. Math., 225 (2010), 2741-2785.  doi: 10.1016/j.aim.2010.05.012.  Google Scholar

[8]

D. CaoS. Peng and S. Yan, Planar vortex patch problem in incompressible steady flow, Adv. Math., 270 (2015), 263-301.  doi: 10.1016/j.aim.2014.09.027.  Google Scholar

[9]

D. CaoS. Peng and S. Yan, Regularization of planar vortices for the incompressible flow, Acta Math. Sci. Ser. B (Engl. Ed.), 38 (2018), 1443-1467.  doi: 10.1016/S0252-9602(18)30827-0.  Google Scholar

[10]

E. N. Dancer and S. Yan, The Lazer-McKenna conjecture and a free boundary problem in two dimensions, J. Lond. Math. Soc., 78 (2008), 639-662.  doi: 10.1112/jlms/jdn045.  Google Scholar

[11]

A. R. Elcrat and K. G. Miller, Steady vortex flows with circulation past asymmetric obstacles, Comm. Partial Differential Equations, 2 (1987), 1095-1115.  doi: 10.1080/03605308708820520.  Google Scholar

[12]

D. IftimieM. C. Lopes Filho and H. J. Nussenzveig Lopes, Two dimensional incompressible ideal flow around a small obstacle, Commun. Partial Diff. Equ., 28 (2003), 349-379.  doi: 10.1081/PDE-120019386.  Google Scholar

[13]

C. Lacave, Two dimensional incompressible ideal flow around a thin obstacle tending to a curve, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1121-1148.  doi: 10.1016/j.anihpc.2008.06.004.  Google Scholar

[14]

M. C. Lopes Filho, Vortex dynamics in a two dimensional domain with holes and the small obstacle limit, SIAM J. Math. Anal., 39 (2007), 422-436.  doi: 10.1137/050647967.  Google Scholar

[15]

D. Smets and J. Van Schaftingen, Desingulariation of vortices for the Euler equation, Arch. Rational Mech. Anal., 198 (2010), 869-925.  doi: 10.1007/s00205-010-0293-y.  Google Scholar

[16]

B. Turkington, On steady vortex flow in two dimensions. Ⅰ, Ⅱ, Comm. Partial Differential Equations, 8 (1983), 999–1030, 1031–1071. doi: 10.1080/03605308308820293.  Google Scholar

[17]

J. Yang, Existence and asymptotic behavior in planar vortex theory, Math. Models Methods Appl. Sci., 1 (1991), 461-475.  doi: 10.1142/S021820259100023X.  Google Scholar

[1]

Andrzej Nowakowski. Variational analysis of semilinear plate equation with free boundary conditions. Discrete & Continuous Dynamical Systems, 2015, 35 (7) : 3133-3154. doi: 10.3934/dcds.2015.35.3133

[2]

Igor Kukavica, Amjad Tuffaha. On the 2D free boundary Euler equation. Evolution Equations & Control Theory, 2012, 1 (2) : 297-314. doi: 10.3934/eect.2012.1.297

[3]

Xavier Fernández-Real, Xavier Ros-Oton. On global solutions to semilinear elliptic equations related to the one-phase free boundary problem. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 6945-6959. doi: 10.3934/dcds.2019238

[4]

Stefano Bianchini. On the Euler-Lagrange equation for a variational problem. Discrete & Continuous Dynamical Systems, 2007, 17 (3) : 449-480. doi: 10.3934/dcds.2007.17.449

[5]

Aram L. Karakhanyan. Lipschitz continuity of free boundary in the continuous casting problem with divergence form elliptic equation. Discrete & Continuous Dynamical Systems, 2016, 36 (1) : 261-277. doi: 10.3934/dcds.2016.36.261

[6]

Jésus Ildefonso Díaz, Tommaso Mingazzini, Ángel Manuel Ramos. On the optimal control for a semilinear equation with cost depending on the free boundary. Networks & Heterogeneous Media, 2012, 7 (4) : 605-615. doi: 10.3934/nhm.2012.7.605

[7]

Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1421-1434. doi: 10.3934/dcdsb.2016003

[8]

Andrzej Nowakowski. Variational approach to stability of semilinear wave equation with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2603-2616. doi: 10.3934/dcdsb.2014.19.2603

[9]

Hua Chen, Wenbin Lv, Shaohua Wu. A free boundary problem for a class of parabolic-elliptic type chemotaxis model. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2577-2592. doi: 10.3934/cpaa.2018122

[10]

Hiroshi Matsuzawa. A free boundary problem for the Fisher-KPP equation with a given moving boundary. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1821-1852. doi: 10.3934/cpaa.2018087

[11]

Zongming Guo, Yunting Yu. Boundary value problems for a semilinear elliptic equation with singular nonlinearity. Communications on Pure & Applied Analysis, 2016, 15 (2) : 399-412. doi: 10.3934/cpaa.2016.15.399

[12]

Chengchun Hao. Remarks on the free boundary problem of compressible Euler equations in physical vacuum with general initial densities. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2885-2931. doi: 10.3934/dcdsb.2015.20.2885

[13]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[14]

Bastian Gebauer, Nuutti Hyvönen. Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Problems & Imaging, 2008, 2 (3) : 355-372. doi: 10.3934/ipi.2008.2.355

[15]

Marco Degiovanni, Michele Scaglia. A variational approach to semilinear elliptic equations with measure data. Discrete & Continuous Dynamical Systems, 2011, 31 (4) : 1233-1248. doi: 10.3934/dcds.2011.31.1233

[16]

Yimei Li, Jiguang Bao. Semilinear elliptic system with boundary singularity. Discrete & Continuous Dynamical Systems, 2020, 40 (4) : 2189-2212. doi: 10.3934/dcds.2020111

[17]

Xiu Ye, Shangyou Zhang. A new weak gradient for the stabilizer free weak Galerkin method with polynomial reduction. Discrete & Continuous Dynamical Systems - B, 2021, 26 (8) : 4131-4145. doi: 10.3934/dcdsb.2020277

[18]

Shuxing Chen, Gui-Qiang Chen, Zejun Wang, Dehua Wang. A multidimensional piston problem for the Euler equations for compressible flow. Discrete & Continuous Dynamical Systems, 2005, 13 (2) : 361-383. doi: 10.3934/dcds.2005.13.361

[19]

J. F. Padial. Existence and estimate of the location of the free-boundary for a non local inverse elliptic-parabolic problem arising in nuclear fusion. Conference Publications, 2011, 2011 (Special) : 1176-1185. doi: 10.3934/proc.2011.2011.1176

[20]

Yang Zhang. A free boundary problem of the cancer invasion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021092

2020 Impact Factor: 1.833

Metrics

  • PDF downloads (17)
  • HTML views (27)
  • Cited by (0)

Other articles
by authors

[Back to Top]